Suppr超能文献

平台比较的陷阱:评估 DNA 拷贝数阵列技术。

The pitfalls of platform comparison: DNA copy number array technologies assessed.

机构信息

Department of Oncology, University of Cambridge, Addenbrooke's Hopsital, Hills Road, Cambridge CB20XZ, UK.

出版信息

BMC Genomics. 2009 Dec 8;10:588. doi: 10.1186/1471-2164-10-588.

Abstract

BACKGROUND

The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance.

RESULTS

By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms.

CONCLUSION

Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons.

摘要

背景

准确且高分辨率的 DNA 拷贝数畸变图绘制已成为深入了解肿瘤发生机制的重要工具。目前有各种商业化的平台可用于此类研究,但对于最佳平台仍未达成共识。之前已经有几项平台比较研究,但它们要么描述了较旧的技术,要么使用了较简单的样本,要么没有解决此类比较中固有的偏差问题。在这里,我们描述了对四种领先的微阵列技术(Affymetrix Genome-wide SNP 5.0 阵列、Agilent High-Density CGH Human 244A 阵列、Illumina HumanCNV370-Duo DNA Analysis BeadChip 和 Nimblegen 385 K 寡核苷酸阵列)的数据进行的系统比较。我们比较了源自原发性乳腺癌及其相应匹配的正常组织、已建立的癌细胞系和 HapMap 个体的样本。通过仔细考虑和避免潜在的偏差来源,我们旨在对平台性能进行公平评估。

结果

通过对每个平台的可重复性、噪声和灵敏度进行理论评估,发现了明显的差异。Nimblegen 的重复阵列方差比其他三个平台高出一个数量级,Agilent 的表现略优于其他平台,而自我自我杂交的比较则显示出相似的模式。对单个探针功率的评估表明,Agilent 具有最高的灵敏度。此外,我们还对每个平台检测不同大小畸变的能力进行了深入的视觉评估。正如预期的那样,所有平台都能够以稳健的方式识别大畸变。然而,一些焦点扩增和缺失仅在部分平台中检测到。

结论

尽管在设计、密度和重复探针数量上存在很大差异,但比较表明,尽管在可重复性、噪声和灵敏度方面存在差异,但平台之间总体上具有高度的一致性。一般来说,Agilent 往往是最好的 aCGH 平台,而 Affymetrix 则是优越的 SNP-CGH 平台,但对于具体决策,本文所述的结果为平台选择和研究设计提供了指导,并且该数据集为更量身定制的比较提供了资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf2b/2797821/29c8c29c857a/1471-2164-10-588-1.jpg

相似文献

1
The pitfalls of platform comparison: DNA copy number array technologies assessed.
BMC Genomics. 2009 Dec 8;10:588. doi: 10.1186/1471-2164-10-588.
3
Evaluation of high-resolution microarray platforms for genomic profiling of bone tumours.
BMC Res Notes. 2010 Aug 8;3:223. doi: 10.1186/1756-0500-3-223.
7
Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.
PLoS One. 2011;6(11):e27859. doi: 10.1371/journal.pone.0027859. Epub 2011 Nov 30.

引用本文的文献

1
Large-scale copy number variant analysis in genes linked to Parkinson´s disease.
NPJ Parkinsons Dis. 2025 Aug 1;11(1):225. doi: 10.1038/s41531-025-01076-y.
2
Early Breast Cancer Evolution by Autosomal Broad Copy Number Alterations.
Int J Genomics. 2022 Feb 25;2022:9332922. doi: 10.1155/2022/9332922. eCollection 2022.
3
DeepCNV: a deep learning approach for authenticating copy number variations.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbaa381.
4
Measuring DNA Copy Number Variation Using High-Density Methylation Microarrays.
J Comput Biol. 2019 Apr;26(4):295-304. doi: 10.1089/cmb.2018.0143. Epub 2019 Feb 21.
5
Meta-mining of copy number profiles of high-risk neuroblastoma tumors.
Sci Data. 2018 Oct 30;5:180240. doi: 10.1038/sdata.2018.240.
6
Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients.
J Natl Cancer Inst. 2018 Oct 1;110(10):1084-1093. doi: 10.1093/jnci/djy022.
7
8
Cytogenomics of Feline Cancers: Advances and Opportunities.
Vet Sci. 2015 Aug 31;2(3):246-258. doi: 10.3390/vetsci2030246.
9
Genomic architecture and treatment outcome in pediatric acute myeloid leukemia: a Children's Oncology Group report.
Blood. 2017 Jun 8;129(23):3051-3058. doi: 10.1182/blood-2017-03-772384. Epub 2017 Apr 14.

本文引用的文献

1
A single-sample method for normalizing and combining full-resolution copy numbers from multiple platforms, labs and analysis methods.
Bioinformatics. 2009 Apr 1;25(7):861-7. doi: 10.1093/bioinformatics/btp074. Epub 2009 Feb 4.
2
Considerations for the processing and analysis of GoldenGate-based two-colour Illumina platforms.
Stat Methods Med Res. 2009 Oct;18(5):437-52. doi: 10.1177/0962280208099451. Epub 2009 Jan 19.
3
GenomeGraphs: integrated genomic data visualization with R.
BMC Bioinformatics. 2009 Jan 6;10:2. doi: 10.1186/1471-2105-10-2.
4
BASH: a tool for managing BeadArray spatial artefacts.
Bioinformatics. 2008 Dec 15;24(24):2921-2. doi: 10.1093/bioinformatics/btn557. Epub 2008 Oct 25.
6
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.
9
Estimation and assessment of raw copy numbers at the single locus level.
Bioinformatics. 2008 Mar 15;24(6):759-67. doi: 10.1093/bioinformatics/btn016. Epub 2008 Jan 19.
10
A comparison of DNA copy number profiling platforms.
Cancer Res. 2007 Nov 1;67(21):10173-80. doi: 10.1158/0008-5472.CAN-07-2102. Epub 2007 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验