Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21550-4. doi: 10.1073/pnas.0911953106. Epub 2009 Dec 7.
We designed and constructed a controllable inducing lysis system in Synechocystis sp. PCC 6803 to facilitate extracting lipids for biofuel production. Several bacteriophage-derived lysis genes were integrated into the genome and placed downstream of a nickel-inducible signal transduction system. We applied 3 strategies: (i) directly using the phage lysis cassette, (ii) constitutively expressing endolysin genes while restricting holin genes, and (iii) combining lysis genes from different phages. Significant autolysis was induced in the Synechocystis sp. PCC 6803 cells with this system by the addition of NiSO(4). Our inducible cyanobacterial lysing system eliminates the need for mechanical or chemical cell breakage and could facilitate recovery of biofuel from cyanobacteria.
我们设计并构建了一个可控诱导裂解系统,用于促进从集胞藻 PCC 6803 中提取脂质以生产生物燃料。将几种噬菌体衍生的裂解基因整合到基因组中,并置于镍诱导信号转导系统的下游。我们应用了 3 种策略:(i)直接使用噬菌体裂解盒,(ii)在限制 holin 基因的同时组成性表达内溶素基因,以及(iii)结合来自不同噬菌体的裂解基因。通过添加 NiSO4,该系统可显著诱导集胞藻 PCC 6803 细胞发生自溶。我们的诱导性蓝藻裂解系统消除了对机械或化学细胞破碎的需求,并可促进从蓝藻中回收生物燃料。