Suppr超能文献

碱基切除修复蛋白的化学计量与亨廷顿病转基因小鼠纹状体中 CAG 不稳定性的增加相关。

Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.

机构信息

Department of Neurobiology and Genetics, Institute of Genetics and Molecular and Cellular Biology, UMR 7104-CNRS/INSERM/UdS, Illkirch, France.

出版信息

PLoS Genet. 2009 Dec;5(12):e1000749. doi: 10.1371/journal.pgen.1000749. Epub 2009 Dec 4.

Abstract

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5'-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5'-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP-BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLbeta was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLbeta strand displacement activity during LP-BER promotes the formation of stable 5'-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion.

摘要

亨廷顿病(HD)是一种进行性神经退行性疾病,由亨廷顿(HTT)基因编码序列中不稳定的 CAG 重复扩展引起。不稳定性影响生殖细胞和体细胞。体细胞不稳定性随年龄增长而增加,且具有组织特异性。特别是在纹状体(HD 优先退化的大脑区域)中的 CAG 重复序列高度不稳定,而在疾病未受累的小脑则相当稳定。体细胞 CAG 不稳定性的年龄依赖性和组织特异性的机制仍然不清楚。最近的研究表明,DNA 氧化和 OGG1(一种参与 8-氧鸟嘌呤损伤修复的糖苷酶)有助于这一过程。我们发现,在 HD 小鼠中,氧化 DNA 损伤异常地以长度依赖性、但与年龄和组织无关的方式在 CAG 重复序列中积累,表明氧化 DNA 损伤本身不足以引发体细胞不稳定性。比较了 HD 小鼠纹状体和小脑之间主要碱基切除修复(BER)酶的蛋白水平和活性。引人注目的是,5'-flap 内切酶活性在 HD 小鼠纹状体中明显低于小脑。因此,Flap Endonuclease-1(FEN1)(主要负责 5'-flap 内切酶活性的酶)和 BER 共因子 HMGB1(都参与长补丁 BER(LP-BER))在纹状体中的水平也明显低于小脑。最后,染色质免疫沉淀实验表明,POLbeta 特异性富集在 HD 小鼠纹状体的 CAG 扩增中,但不在小脑。这些体内数据符合以下模型:在 LP-BER 过程中 POLbeta 的链置换活性促进 CAG 重复序列中稳定的 5'-flap 结构的形成,而当 FEN1 活性持续较低时,这些结构不能有效地去除。我们提出,BER 酶的化学计量是体细胞 CAG 扩展组织选择性的一个关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a09/2778875/53d4ef275ea9/pgen.1000749.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验