Suppr超能文献

酵母FEN1的单倍剂量不足会以长度依赖的方式导致扩展的CAG/CTG序列不稳定。

Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.

作者信息

Yang Jiahui, Freudenreich Catherine H

机构信息

Department of Biology, Tufts University, Medford, MA 02155, USA.

出版信息

Gene. 2007 May 15;393(1-2):110-5. doi: 10.1016/j.gene.2007.01.025. Epub 2007 Feb 12.

Abstract

Trinucleotide repeat diseases, such as Huntington's disease, are caused by the expansion of trinucleotide repeats above a threshold of about 35 repeats. Once expanded, the repeats are unstable and tend to expand further both in somatic cells and during transmission, resulting in a more severe disease phenotype. Flap endonuclease 1 (Fen1), has an endonuclease activity specific for 5' flap structures and is involved in Okazaki fragment processing and base excision repair. Fen1 also plays an important role in preventing instability of CAG/CTG trinucleotide repeat sequences, as the expansion frequency of CAG/CTG repeats is increased in FEN1 mutants in vitro and in yeast cells defective for the yeast homolog, RAD27. Here we have tested whether one copy of yeast FEN1 is enough to maintain CAG/CTG tract stability in diploid yeast cells. We found that CAG/CTG repeats are stable in RAD27 +/- cells if the tract is 70 repeats long and exhibit a slightly increased expansion frequency if the tract is 85 or 130 repeats long. However for CAG-155 tracts, the repeat expansion frequency in RAD27 +/- cells is significantly higher than in RAD27 +/+ cells. This data indicates that cells containing longer CAG/CTG repeats need more Fen1 protein to maintain tract stability and that maintenance of long CAG/CTG repeats is particularly sensitive to Fen1 levels. Our results may explain the relatively small effects seen in the Huntington's disease (HD) FEN1 +/- heterozygous mice and myotonic dystrophy type 1 (DM1) FEN1 +/- heterozygous mice, and suggest that inefficient flap processing by Fen1 could play a role in the continued expansions seen in humans with trinucleotide repeat expansion diseases.

摘要

三核苷酸重复疾病,如亨廷顿舞蹈症,是由三核苷酸重复序列扩展至约35次重复的阈值以上所致。一旦发生扩展,这些重复序列就不稳定,在体细胞中以及传递过程中往往会进一步扩展,从而导致更严重的疾病表型。瓣状核酸内切酶1(Fen1)具有针对5' 瓣状结构的内切酶活性,参与冈崎片段加工和碱基切除修复。Fen1在防止CAG/CTG三核苷酸重复序列的不稳定性方面也起着重要作用,因为在体外FEN1突变体以及酵母同源物RAD27有缺陷的酵母细胞中,CAG/CTG重复序列的扩展频率会增加。在这里,我们测试了酵母FEN1的一个拷贝是否足以维持二倍体酵母细胞中CAG/CTG区域的稳定性。我们发现,如果该区域有70次重复,CAG/CTG重复序列在RAD27+/-细胞中是稳定的;如果该区域有85次或130次重复,则扩展频率会略有增加。然而,对于CAG-155区域,RAD27+/-细胞中的重复扩展频率显著高于RAD27+/+细胞。该数据表明,含有较长CAG/CTG重复序列的细胞需要更多的Fen1蛋白来维持区域稳定性,并且长CAG/CTG重复序列的维持对Fen1水平特别敏感。我们的结果可能解释了在亨廷顿舞蹈症(HD)FEN1+/-杂合小鼠和1型强直性肌营养不良(DM1)FEN1+/-杂合小鼠中观察到的相对较小的影响,并表明Fen1对瓣状结构处理效率低下可能在患有三核苷酸重复扩展疾病的人类中持续发生的扩展中起作用。

相似文献

1
Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
Gene. 2007 May 15;393(1-2):110-5. doi: 10.1016/j.gene.2007.01.025. Epub 2007 Feb 12.
2
Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
Mol Cell Biol. 2004 May;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
3
Fen1 does not control somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat in a knock-in mouse model for DM1.
FEBS Lett. 2006 Oct 2;580(22):5208-14. doi: 10.1016/j.febslet.2006.08.059. Epub 2006 Sep 5.
5
Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
Mol Cell Biol. 2003 Nov;23(21):7849-60. doi: 10.1128/MCB.23.21.7849-7860.2003.
10
Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells.
Hum Mol Genet. 2013 Dec 20;22(25):5276-87. doi: 10.1093/hmg/ddt386. Epub 2013 Aug 9.

引用本文的文献

1
Does the XPA-FEN1 Interaction Concern to Nucleotide Excision Repair or Beyond?
Biomolecules. 2024 Jul 9;14(7):814. doi: 10.3390/biom14070814.
2
Replication dependent and independent mechanisms of GAA repeat instability.
DNA Repair (Amst). 2022 Oct;118:103385. doi: 10.1016/j.dnarep.2022.103385. Epub 2022 Aug 3.
3
Stable G-quadruplex DNA structures promote replication-dependent genome instability.
J Biol Chem. 2022 Jun;298(6):101947. doi: 10.1016/j.jbc.2022.101947. Epub 2022 Apr 18.
4
Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models.
J Huntingtons Dis. 2021;10(1):123-148. doi: 10.3233/JHD-200426.
6
FAN1 protects against repeat expansions in a Fragile X mouse model.
DNA Repair (Amst). 2018 Sep;69:1-5. doi: 10.1016/j.dnarep.2018.07.001. Epub 2018 Jul 5.
7
Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes.
PLoS One. 2017 Jun 19;12(6):e0179278. doi: 10.1371/journal.pone.0179278. eCollection 2017.
8
Repeat instability during DNA repair: Insights from model systems.
Crit Rev Biochem Mol Biol. 2015 Mar-Apr;50(2):142-67. doi: 10.3109/10409238.2014.999192. Epub 2015 Jan 22.
9
A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β.
Nucleic Acids Res. 2014 Dec 16;42(22):13749-63. doi: 10.1093/nar/gku1239. Epub 2014 Nov 26.
10
Expansion of CAG repeats in Escherichia coli is controlled by single-strand DNA exonucleases of both polarities.
Genetics. 2014 Oct;198(2):509-17. doi: 10.1534/genetics.114.168245. Epub 2014 Jul 31.

本文引用的文献

1
Fen1 does not control somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat in a knock-in mouse model for DM1.
FEBS Lett. 2006 Oct 2;580(22):5208-14. doi: 10.1016/j.febslet.2006.08.059. Epub 2006 Sep 5.
2
Lagging strand replication proteins in genome stability and DNA repair.
Chem Rev. 2006 Feb;106(2):453-73. doi: 10.1021/cr040497l.
3
Repeat instability: mechanisms of dynamic mutations.
Nat Rev Genet. 2005 Oct;6(10):729-42. doi: 10.1038/nrg1689.
4
Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability.
Trends Genet. 2005 May;21(5):272-80. doi: 10.1016/j.tig.2005.03.008.
6
Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
Mol Cell Biol. 2004 May;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
7
Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis.
Hum Mol Genet. 2003 Dec 15;12(24):3359-67. doi: 10.1093/hmg/ddg352. Epub 2003 Oct 21.
8
Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
Mol Cell Biol. 2003 Nov;23(21):7849-60. doi: 10.1128/MCB.23.21.7849-7860.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验