Suppr超能文献

S-腺苷甲硫氨酸脱羧酶的结构生物学。

Structural biology of S-adenosylmethionine decarboxylase.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Amino Acids. 2010 Feb;38(2):451-60. doi: 10.1007/s00726-009-0404-y. Epub 2009 Dec 8.

Abstract

S-adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and a subject of many structural and biochemical investigations for anti-cancer and anti-parasitic therapy. The enzyme undergoes an internal serinolysis reaction as a post-translational modification to generate the active site pyruvoyl group for the decarboxylation process. The crystal structures of AdoMetDC from Homo sapiens, Solanum tuberosum, Thermotoga maritima, and Aquifex aeolicus have been determined. Numerous crystal structures of human AdoMetDC and mutants have provided insights into the mechanism of autoprocessing, putrescine activation, substrate specificity, and inhibitor design to the enzyme. The comparison of the human and potato enzyme with the T. maritima and A. aeolicus enzymes supports the hypothesis that the eukaryotic enzymes evolved by gene duplication and fusion. The residues implicated in processing and activity are structurally conserved in all forms of the enzyme, suggesting a divergent evolution of AdoMetDC.

摘要

S-腺苷甲硫氨酸脱羧酶(AdoMetDC)是多胺生物合成途径中的关键酶,也是许多抗癌和抗寄生虫治疗的结构和生化研究的对象。该酶作为翻译后修饰经历丝氨酰内裂解反应,为脱羧过程生成活性位点的丙酮酸基。已确定来自智人、土豆、海栖热袍菌和水生栖热菌的 AdoMetDC 的晶体结构。许多人 AdoMetDC 和突变体的晶体结构为该酶的自加工、腐胺激活、底物特异性和抑制剂设计的机制提供了深入的了解。与 T. maritima 和 A. aeolicus 酶的人酶和马铃薯酶的比较支持了真核酶通过基因复制和融合进化的假说。所有形式的酶中与加工和活性相关的残基在结构上保守,表明 AdoMetDC 的进化具有分歧。

相似文献

1
Structural biology of S-adenosylmethionine decarboxylase.
Amino Acids. 2010 Feb;38(2):451-60. doi: 10.1007/s00726-009-0404-y. Epub 2009 Dec 8.
2
Complexes of Thermotoga maritimaS-adenosylmethionine decarboxylase provide insights into substrate specificity.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):181-9. doi: 10.1107/S090744490904877X. Epub 2010 Jan 22.
3
Evolutionary links as revealed by the structure of Thermotoga maritima S-adenosylmethionine decarboxylase.
J Biol Chem. 2004 Aug 6;279(32):33837-46. doi: 10.1074/jbc.M403369200. Epub 2004 May 18.
6
Mechanisms of allosteric regulation of Trypanosoma cruzi S-adenosylmethionine decarboxylase.
Biochemistry. 2006 Jun 27;45(25):7797-807. doi: 10.1021/bi0603975.
9
Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme.
J Biol Chem. 2008 Sep 19;283(38):25829-38. doi: 10.1074/jbc.M802674200. Epub 2008 Jul 23.
10
Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes.
J Biol Chem. 1997 Nov 7;272(45):28342-8. doi: 10.1074/jbc.272.45.28342.

引用本文的文献

2
Biomarkers to predict or measure steroid resistance in idiopathic nephrotic syndrome: A systematic review.
PLoS One. 2025 Feb 13;20(2):e0312232. doi: 10.1371/journal.pone.0312232. eCollection 2025.
3
Prognostic, oncogenic roles, and pharmacogenomic features of AMD1 in hepatocellular carcinoma.
Cancer Cell Int. 2024 Dec 18;24(1):398. doi: 10.1186/s12935-024-03593-x.
5
Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies.
Int J Mol Sci. 2023 Aug 7;24(15):12529. doi: 10.3390/ijms241512529.
6
Chromosomal Instability Causes Sensitivity to Polyamines and One-Carbon Metabolism.
Metabolites. 2023 May 9;13(5):642. doi: 10.3390/metabo13050642.
7
Functional polyamine metabolic enzymes and pathways encoded by the virosphere.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2214165120. doi: 10.1073/pnas.2214165120. Epub 2023 Feb 21.
8
One-Carbon and Polyamine Metabolism as Cancer Therapy Targets.
Biomolecules. 2022 Dec 19;12(12):1902. doi: 10.3390/biom12121902.
9
The Potential Role of Polyamines in Epilepsy and Epilepsy-Related Pathophysiological Changes.
Biomolecules. 2022 Oct 29;12(11):1596. doi: 10.3390/biom12111596.
10
Noncanonical Functions of Enzyme Cofactors as Building Blocks in Natural Product Biosynthesis.
JACS Au. 2022 Aug 17;2(9):1950-1963. doi: 10.1021/jacsau.2c00391. eCollection 2022 Sep 26.

本文引用的文献

2
Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme.
Mol Biochem Parasitol. 2009 Nov;168(1):1-6. doi: 10.1016/j.molbiopara.2009.05.009. Epub 2009 Jun 10.
4
Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase.
Biochemistry. 2008 Dec 16;47(50):13404-17. doi: 10.1021/bi801732m.
5
Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii.
Acta Crystallogr D Biol Crystallogr. 2008 Apr;64(Pt 4):377-82. doi: 10.1107/S0907444908000474. Epub 2008 Mar 19.
7
Metal ion activation of S-adenosylmethionine decarboxylase reflects cation charge density.
Biochemistry. 2007 Jul 10;46(27):8172-80. doi: 10.1021/bi6025962. Epub 2007 Jun 13.
8
Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8275-80. doi: 10.1073/pnas.0701111104. Epub 2007 May 7.
9
Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases.
Nat Rev Drug Discov. 2007 May;6(5):373-90. doi: 10.1038/nrd2243.
10
Rationale for, and design of, a clinical trial targeting polyamine metabolism for colon cancer chemoprevention.
Amino Acids. 2007 Aug;33(2):189-95. doi: 10.1007/s00726-007-0515-2. Epub 2007 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验