Suppr超能文献

利用 MEG 识别空间上重叠的局部皮质网络。

Identifying spatially overlapping local cortical networks with MEG.

机构信息

Institute of Cognitive Neuroscience, UCL, London, UK.

出版信息

Hum Brain Mapp. 2010 Jul;31(7):1003-16. doi: 10.1002/hbm.20912.

Abstract

Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that it may be possible to distinguish between different neuronal populations on the basis of their macroscopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns contributing to a signal at a specific cortical location could be identified based on the measured MEG signal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscillations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one location. Both the single trial evoked response (0-300 ms) and induced post-transient power spectra (300-2,300 ms, 20-70 Hz band) due to the different stimuli were classifiable significantly above chance in 11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients have decayed. Importantly, the classification of this induced oscillation was still possible even when the power spectra were rank-transformed showing that the different underlying networks give rise to different characteristic temporal signatures.

摘要

最近的建模研究(Hadjipapas 等人,2009:Neuroimage 44:1290-1303)表明,根据宏观测量(EEG/MEG)的平均场,可能区分不同的神经元群体。我们着手测试是否可以基于测量的 MEG 信号识别对特定皮质位置的信号有贡献的不同取向柱。我们使用 1.5 度正方形、静态、倾斜取向的光栅刺激在初级视觉皮层的一个焦点区域产生持续的伽马振荡。然后,我们使用多元分类器方法仅基于来自该位置的时间序列数据来预测刺激的方向(左斜或右斜)。基于不同刺激的单个试验诱发反应(0-300ms)和诱导后瞬态功率谱(300-2300ms,20-70Hz 频带)在 11/12 和 10/12 个数据集分别可显著高于机会水平进行分类。有趣的是,在感知发生后很久,所有神经元瞬变已经衰减,刺激特异性信息仍保留在伽马振荡的持续部分。重要的是,即使对功率谱进行秩变换,也可以对这种诱导的振荡进行分类,这表明不同的基础网络产生不同的特征时间特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1987/6871109/706ad6da0aa4/HBM-31-1003-g004.jpg

相似文献

1
Identifying spatially overlapping local cortical networks with MEG.
Hum Brain Mapp. 2010 Jul;31(7):1003-16. doi: 10.1002/hbm.20912.
2
Visual gamma oscillations: the effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings.
Neuroimage. 2013 Apr 1;69:223-30. doi: 10.1016/j.neuroimage.2012.12.038. Epub 2012 Dec 27.
3
Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response.
Neuroimage. 2019 Feb 1;186:703-712. doi: 10.1016/j.neuroimage.2018.11.029. Epub 2018 Nov 20.
4
Induced and evoked neural correlates of orientation selectivity in human visual cortex.
Neuroimage. 2011 Feb 14;54(4):2983-93. doi: 10.1016/j.neuroimage.2010.11.045. Epub 2010 Nov 27.
5
Decoding the orientation of contrast edges from MEG evoked and induced responses.
Neuroimage. 2018 Oct 15;180(Pt A):267-279. doi: 10.1016/j.neuroimage.2017.07.022. Epub 2017 Jul 13.
6
No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex.
J Neurosci. 2021 Aug 4;41(31):6684-6698. doi: 10.1523/JNEUROSCI.3134-20.2021. Epub 2021 Jul 6.
7
The role of oscillatory brain activity in object processing and figure-ground segmentation in human vision.
Int J Psychophysiol. 2011 Mar;79(3):392-400. doi: 10.1016/j.ijpsycho.2010.12.007. Epub 2010 Dec 29.
8
On the relationship between cortical excitability and visual oscillatory responses - A concurrent tDCS-MEG study.
Neuroimage. 2016 Oct 15;140:41-9. doi: 10.1016/j.neuroimage.2015.09.069. Epub 2015 Oct 9.
9
Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli.
J Neurophysiol. 2009 Aug;102(2):1241-53. doi: 10.1152/jn.91044.2008. Epub 2009 Jun 10.
10
Neuromagnetic activation and oscillatory dynamics of stimulus-locked processing during naturalistic viewing.
Neuroimage. 2020 Aug 1;216:116414. doi: 10.1016/j.neuroimage.2019.116414. Epub 2019 Nov 30.

引用本文的文献

1
Characterizing the dynamics of mental representations: the temporal generalization method.
Trends Cogn Sci. 2014 Apr;18(4):203-10. doi: 10.1016/j.tics.2014.01.002. Epub 2014 Mar 2.
2
Two distinct dynamic modes subtend the detection of unexpected sounds.
PLoS One. 2014 Jan 27;9(1):e85791. doi: 10.1371/journal.pone.0085791. eCollection 2014.
3
Population level inference for multivariate MEG analysis.
PLoS One. 2013 Aug 5;8(8):e71305. doi: 10.1371/journal.pone.0071305. Print 2013.
4
Feature-specific information processing precedes concerted activation in human visual cortex.
J Neurosci. 2013 May 1;33(18):7691-9. doi: 10.1523/JNEUROSCI.3905-12.2013.
5
BOLD Responses in Human Primary Visual Cortex are Insensitive to Substantial Changes in Neural Activity.
Front Hum Neurosci. 2013 Mar 11;7:76. doi: 10.3389/fnhum.2013.00076. eCollection 2013.
6
Early visual responses predict conscious face perception within and between subjects during binocular rivalry.
J Cogn Neurosci. 2013 Jun;25(6):969-85. doi: 10.1162/jocn_a_00353. Epub 2013 Jan 2.
7
Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.
Front Psychol. 2011 May 27;2:100. doi: 10.3389/fpsyg.2011.00100. eCollection 2011.
8
Controlling false positive rates in mass-multivariate tests for electromagnetic responses.
Neuroimage. 2011 Jun 1;56(3):1072-81. doi: 10.1016/j.neuroimage.2011.02.072. Epub 2011 Mar 17.
9
It's about Time.
Front Hum Neurosci. 2011 Jan 19;5:2. doi: 10.3389/fnhum.2011.00002. eCollection 2011.

本文引用的文献

1
A microsaccadic rhythm modulates gamma-band synchronization and behavior.
J Neurosci. 2009 Jul 29;29(30):9471-80. doi: 10.1523/JNEUROSCI.1193-09.2009.
2
The foveal confluence in human visual cortex.
J Neurosci. 2009 Jul 15;29(28):9050-8. doi: 10.1523/JNEUROSCI.1760-09.2009.
3
Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8356-61. doi: 10.1073/pnas.0900728106. Epub 2009 May 4.
5
The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades.
Brain Topogr. 2009 Jun;22(1):3-6. doi: 10.1007/s10548-009-0077-6. Epub 2009 Feb 21.
7
Can we observe collective neuronal activity from macroscopic aggregate signals?
Neuroimage. 2009 Feb 15;44(4):1290-303. doi: 10.1016/j.neuroimage.2008.10.035. Epub 2008 Nov 7.
8
Dynamic causal models of steady-state responses.
Neuroimage. 2009 Feb 1;44(3):796-811. doi: 10.1016/j.neuroimage.2008.09.048. Epub 2008 Oct 17.
9
Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex.
Hum Brain Mapp. 2009 Jul;30(7):2000-7. doi: 10.1002/hbm.20644.
10
Sparse linear regression for reconstructing muscle activity from human cortical fMRI.
Neuroimage. 2008 Oct 1;42(4):1463-72. doi: 10.1016/j.neuroimage.2008.06.018. Epub 2008 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验