Institute of Cognitive Neuroscience, UCL, London, UK.
Hum Brain Mapp. 2010 Jul;31(7):1003-16. doi: 10.1002/hbm.20912.
Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that it may be possible to distinguish between different neuronal populations on the basis of their macroscopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns contributing to a signal at a specific cortical location could be identified based on the measured MEG signal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscillations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one location. Both the single trial evoked response (0-300 ms) and induced post-transient power spectra (300-2,300 ms, 20-70 Hz band) due to the different stimuli were classifiable significantly above chance in 11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients have decayed. Importantly, the classification of this induced oscillation was still possible even when the power spectra were rank-transformed showing that the different underlying networks give rise to different characteristic temporal signatures.
最近的建模研究(Hadjipapas 等人,2009:Neuroimage 44:1290-1303)表明,根据宏观测量(EEG/MEG)的平均场,可能区分不同的神经元群体。我们着手测试是否可以基于测量的 MEG 信号识别对特定皮质位置的信号有贡献的不同取向柱。我们使用 1.5 度正方形、静态、倾斜取向的光栅刺激在初级视觉皮层的一个焦点区域产生持续的伽马振荡。然后,我们使用多元分类器方法仅基于来自该位置的时间序列数据来预测刺激的方向(左斜或右斜)。基于不同刺激的单个试验诱发反应(0-300ms)和诱导后瞬态功率谱(300-2300ms,20-70Hz 频带)在 11/12 和 10/12 个数据集分别可显著高于机会水平进行分类。有趣的是,在感知发生后很久,所有神经元瞬变已经衰减,刺激特异性信息仍保留在伽马振荡的持续部分。重要的是,即使对功率谱进行秩变换,也可以对这种诱导的振荡进行分类,这表明不同的基础网络产生不同的特征时间特征。