Suppr超能文献

我们能否从宏观聚合信号中观察到集体神经元活动?

Can we observe collective neuronal activity from macroscopic aggregate signals?

作者信息

Hadjipapas Avgis, Casagrande Erik, Nevado Angel, Barnes Gareth R, Green Gary, Holliday Ian E

机构信息

Wellcome Trust Laboratory for MEG studies, Neurosciences, School of Life and Health Sciences, Aston Universtiy, Aston Triangle, Birmingham, UK.

出版信息

Neuroimage. 2009 Feb 15;44(4):1290-303. doi: 10.1016/j.neuroimage.2008.10.035. Epub 2008 Nov 7.

Abstract

The fundamental problem faced by noninvasive neuroimaging techniques such as EEG/MEG(1) is to elucidate functionally important aspects of the microscopic neuronal network dynamics from macroscopic aggregate measurements. Due to the mixing of the activities of large neuronal populations in the observed macroscopic aggregate, recovering the underlying network that generates the signal in the absence of any additional information represents a considerable challenge. Recent MEG studies have shown that macroscopic measurements contain sufficient information to allow the differentiation between patterns of activity, which are likely to represent different stimulus-specific collective modes in the underlying network (Hadjipapas, A., Adjamian, P., Swettenham, J.B., Holliday, I.E., Barnes, G.R., 2007. Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. NeuroImage 35, 518-530). The next question arising in this context is whether aspects of collective network activity can be recovered from a macroscopic aggregate signal. We propose that this issue is most appropriately addressed if MEG/EEG signals are to be viewed as macroscopic aggregates arising from networks of coupled systems as opposed to aggregates across a mass of largely independent neural systems. We show that collective modes arising in a network of simulated coupled systems can be indeed recovered from the macroscopic aggregate. Moreover, we show that nonlinear state space methods yield a good approximation of the number of effective degrees of freedom in the network. Importantly, information about hidden variables, which do not directly contribute to the aggregate signal, can also be recovered. Finally, this theoretical framework can be applied to experimental MEG/EEG data in the future, enabling the inference of state dependent changes in the degree of local synchrony in the underlying network.

摘要

脑电图/脑磁图(EEG/MEG)等非侵入性神经成像技术面临的根本问题是,要从宏观总体测量中阐明微观神经元网络动力学在功能上的重要方面。由于在观察到的宏观总体中大量神经元群体活动相互混合,在没有任何额外信息的情况下恢复产生信号的潜在网络是一项相当大的挑战。最近的脑磁图研究表明,宏观测量包含足够的信息,能够区分不同的活动模式,这些模式可能代表潜在网络中不同的刺激特异性集体模式(哈吉帕帕斯,A.,阿贾米安,P.,斯韦滕纳姆,J.B.,霍利迪,I.E.,巴恩斯,G.R.,2007年。不同空间尺度的刺激在人类视觉皮层中诱发具有不同时间特征的伽马活动。《神经影像学》35卷,第518 - 530页)。在这种情况下出现的下一个问题是,能否从宏观总体信号中恢复集体网络活动的各个方面。我们认为,如果将脑磁图/脑电图信号视为由耦合系统网络产生的宏观总体,而不是大量基本独立的神经系统的总体,那么这个问题就能得到最恰当的解决。我们表明,在模拟耦合系统网络中出现的集体模式确实可以从宏观总体中恢复。此外,我们还表明,非线性状态空间方法能够很好地近似网络中有效自由度的数量。重要的是,关于不直接对总体信号有贡献的隐藏变量的信息也能够被恢复。最后,这个理论框架未来可应用于实验性脑磁图/脑电图数据,从而能够推断潜在网络中局部同步程度的状态依赖性变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验