Suppr超能文献

群体水平上的多变量 MEG 分析推断。

Population level inference for multivariate MEG analysis.

机构信息

Institute of Cognitive Neuroscience, University College London, London, United Kingdom.

出版信息

PLoS One. 2013 Aug 5;8(8):e71305. doi: 10.1371/journal.pone.0071305. Print 2013.

Abstract

Multivariate analysis is a very general and powerful technique for analysing Magnetoencephalography (MEG) data. An outstanding problem however is how to make inferences that are consistent over a group of subjects as to whether there are condition-specific differences in data features, and what are those features that maximise these differences. Here we propose a solution based on Canonical Variates Analysis (CVA) model scoring at the subject level and random effects Bayesian model selection at the group level. We apply this approach to beamformer reconstructed MEG data in source space. CVA estimates those multivariate patterns of activation that correlate most highly with the experimental design; the order of a CVA model is then determined by the number of significant canonical vectors. Random effects Bayesian model comparison then provides machinery for inferring the optimal order over the group of subjects. Absence of a multivariate dependence is indicated by the null model being the most likely. This approach can also be applied to CVA models with a fixed number of canonical vectors but supplied with different feature sets. We illustrate the method by identifying feature sets based on variable-dimension MEG power spectra in the primary visual cortex and fusiform gyrus that are maximally discriminative of data epochs before versus after visual stimulation.

摘要

多元分析是一种非常通用且强大的技术,可用于分析脑磁图 (MEG) 数据。然而,一个突出的问题是如何在一组对象中进行推断,以确定数据特征是否存在特定于条件的差异,以及哪些特征能最大程度地产生这些差异。在这里,我们提出了一种基于典型变量分析 (CVA) 模型评分的解决方案,该方法在个体水平上进行,在群体水平上进行随机效应贝叶斯模型选择。我们将这种方法应用于源空间中的波束形成器重建 MEG 数据。CVA 估计与实验设计相关性最高的那些激活的多元模式;然后,CVA 模型的顺序由显著典型向量的数量决定。随机效应贝叶斯模型比较然后提供了一种机制,用于推断组中最佳的顺序。如果没有多元依赖性,则零模型最有可能。该方法还可以应用于具有固定数量的典型向量但提供不同特征集的 CVA 模型。我们通过识别基于初级视觉皮层和梭状回的可变维 MEG 功率谱的特征集来说明该方法,这些特征集在视觉刺激前后的数据时段中具有最大的可区分性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519e/3734032/21ae823e447c/pone.0071305.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验