Suppr超能文献

超疏水网面的尺度依赖性。

Scale dependence of omniphobic mesh surfaces.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Langmuir. 2010 Mar 16;26(6):4027-35. doi: 10.1021/la903489r.

Abstract

We provide a simple design chart framework to predict the apparent contact angle on a textured surface in terms of the equilibrium contact angle on a chemically identical smooth surface and details of the surface topography. For low surface tension liquids such as methanol (gamma(lv) = 22.7 mN/m) and octane (gamma(lv) = 21.6 mN/m), a solid-liquid-air composite interface on a textured surface is inherently metastable. Thus, on application of a sufficient pressure difference (e.g., an externally applied pressure or a sufficiently large Laplace pressure at small droplet size) the metastable composite interface transitions to a fully wetted interface. A dimensionless robustness factor is used to quantify the breakthrough pressure difference necessary to disrupt a metastable composite interface and to predict a priori the existence of a robust composite interface. The impact of the length scale (radius of the cylindrical features R varying from 18 to 114 microm) and the feature spacing ratio (D() = (R + D)/R varying from 2.2 to 5.1, where 2D is the spacing between the cylindrical features) on the robustness is illustrated by performing contact angle measurements on a set of dip-coated wire-mesh surfaces, which provide systematically quantifiable cylindrical texture. The design chart for a given feature size R shows how the two independent design parameters--surface chemistry as revealed in the equilibrium contact angle and texture spacing embodied in the dimensionless spacing ratio (D())--can be used to develop surfaces with desirably large values of the apparent contact angle and robustness of the metastable composite interface. Most revealing is the scaling of the robustness with the dimensionless parameter l(cap)/R (where l(cap = (gamma(lv)/rho g)(1/2) is the capillary length), which indicates clearly why, in the consideration of self-similar surfaces, smaller is better for producing omniphobic surfaces that resist wetting by liquids with low surface tension.

摘要

我们提供了一个简单的设计图表框架,用于根据化学性质相同的光滑表面上的平衡接触角和表面形貌的细节来预测纹理表面上的表观接触角。对于低表面张力液体,如甲醇(γ(lv)= 22.7 mN/m)和辛烷(γ(lv)= 21.6 mN/m),纹理表面上的固-液-气复合界面本质上是亚稳的。因此,在施加足够的压差(例如,外部施加的压力或在小液滴尺寸下足够大的拉普拉斯压力)时,亚稳复合界面会过渡到完全润湿的界面。使用无量纲稳健性因子来量化破坏亚稳复合界面所需的突破压差,并预测稳健复合界面的存在。通过对一组浸涂金属丝网表面进行接触角测量,说明了长度尺度(圆柱形特征的半径 R 从 18 到 114 微米变化)和特征间距比(D()=(R + D)/R 从 2.2 到 5.1 变化,其中 2D 是圆柱形特征之间的间距)对稳健性的影响,这些表面提供了可系统量化的圆柱形纹理。对于给定特征尺寸 R 的设计图表表明,如何使用两个独立的设计参数-平衡接触角所揭示的表面化学性质和无量纲间距比(D())所体现的纹理间距-来开发具有理想大表观接触角和亚稳复合界面稳健性的表面。最有启发性的是稳健性与无量纲参数 l(cap)/R(其中 l(cap =(γ(lv)/ρg)(1/2)是毛细长度)的缩放关系,这清楚地表明了为什么在考虑自相似表面时,较小的尺寸更有利于产生抵抗低表面张力液体润湿的超疏水性表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验