Department of Chemical Engineering, Massachusetts Institute ofTechnology, Cambridge, Massachusetts 02139, USA.
Langmuir. 2009 Dec 1;25(23):13625-32. doi: 10.1021/la901997s.
Surfaces that are strongly nonwetting to oil and other low surface tension liquids can be realized by trapping microscopic pockets of air within the asperities of a re-entrant texture and generating a solid-liquid-vapor composite interface. For low surface tension liquids such as hexadecane (gamma(lv) = 27.5 mN/m), this composite interface is metastable as a result of the low value of the equilibrium contact angle. Consequently, pressure perturbations can result in an irreversible transition of the metastable composite interface to the fully wetted interface. In this work, we use a simple dip-coating and thermal annealing procedure to tune the liquid wettability of commercially available polyester fabrics. A mixture of 10% 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) and 90% polyethyl methacrylate (PEMA) is used to uniformly coat the fabric surface topography. Contact angle measurements show that a robust metastable composite interface with high apparent contact angles can be supported for hexadecane (gamma(lv) = 27.5 mN/m) and dodecane (gamma(lv) = 25.3 mN/m). To tune the solid surface energy of the coated surface, we also developed a reversible treatment using thermal annealing of the surface in contact with either dry air or water. The tunability of the solid surface energy along with the inherent re-entrant texture of the polyester fabric result in reversibly switchable oleophobicity between a highly nonwetting state and a fully wetted state for low surface tension liquids such as hexadecane and dodecane. This tunability can be explained within a design parameter framework, which provides a quantitative criterion for the transition between the two states, as well as accurate predictions of the measured values of the apparent contact angle (theta*) for the dip-coated polyester fabrics.
表面强烈地不润湿油和其他低表面张力液体,可以通过捕捉空气的微观口袋内的凹痕的再入纹理和生成一个固-液-气复合界面来实现。对于低表面张力液体如十六烷(γ(LV)= 27.5毫牛顿/米),这种复合界面是亚稳的,由于平衡接触角的值低。因此,压力扰动会导致亚稳复合界面的不可逆转变完全润湿界面。在这项工作中,我们使用简单的浸涂和热退火程序来调整市售聚酯织物的润湿性。10%的 1H,1H,2H,2H-十七氟癸基聚倍半硅氧烷(氟代 POSS)和 90%的聚甲基丙烯酸乙酯(PEMA)的混合物用于均匀地涂覆织物表面形貌。接触角测量表明,对于十六烷(γ(LV)= 27.5毫牛顿/米)和十二烷(γ(LV)= 25.3毫牛顿/米),可以支持具有高表观接触角的稳定亚稳复合界面。为了调整涂层表面的固体表面能,我们还开发了一种使用表面与干燥空气或水接触的热退火的可逆处理。可调谐的固体表面能以及聚酯织物的固有再入纹理导致在低表面张力液体如十六烷和十二烷之间高度非润湿状态和完全润湿状态之间的可逆的疏油性。这种可调谐性可以在设计参数框架内解释,该框架提供了两种状态之间的转变的定量标准,以及浸涂聚酯织物的表观接触角(θ*)的测量值的准确预测。