Suppr超能文献

通过应用生物药剂学药物处置分类系统预测药物处置。

Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System.

机构信息

Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA 94143-0912, USA.

出版信息

Basic Clin Pharmacol Toxicol. 2010 Mar;106(3):162-7. doi: 10.1111/j.1742-7843.2009.00498.x. Epub 2009 Dec 7.

Abstract

A Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters in determining drug bioavailability and disposition. BDDCS may be useful in predicting: routes of drug elimination; efflux and absorptive transporters effects on oral absorption; when transporter-enzyme interplay will yield clinically significant effects (e.g. low drug bioavailability and drug-drug interactions); and transporter effects on post-absorptive systemic drug levels following oral and i.v. dosing. For highly soluble, highly permeable Class 1 compounds, metabolism is the major route of elimination and transporter effects on drug bioavailability and hepatic disposition are negligible. In contrast for the poorly permeable Class 3 and 4 compounds, metabolism only plays a minor role in drug elimination. Uptake transporters are major determinants of drug bioavailability for these poorly permeable drugs and both uptake and efflux transporters could be important for drug elimination. Highly permeable, poorly soluble, extensively metabolized Class 2 compounds present the most complicated relationship in defining the impact of transporters due to a marked transporter-enzyme interplay. Uptake transporters are unimportant for Class 2 drug bioavailability, (ensure space after,) but can play a major role in hepatic and renal elimination. Efflux transporters have major effects on drug bioavailability, absorption, metabolism and elimination of Class 2 drugs. It is difficult to accurately characterize drugs in terms of the high permeability criteria, i.e. > or =90% absorbed. We suggest that extensive metabolism may substitute for the high permeability characteristic, and that BDDCS using elimination criteria may provide predictability in characterizing drug disposition profiles for all classes of compounds.

摘要

生物药剂学药物处置分类系统(BDDCS)被提出作为预测转运体在确定药物生物利用度和处置中的重要性的基础。BDDCS 可能有助于预测:药物消除途径;外排和吸收转运体对口服吸收的影响;当转运体-酶相互作用将产生临床显著影响(例如,低药物生物利用度和药物相互作用)时;以及转运体对口服和静脉给药后吸收后全身药物水平的影响。对于高度水溶性、高渗透性的 1 类化合物,代谢是主要的消除途径,转运体对药物生物利用度和肝处置的影响可以忽略不计。相比之下,对于渗透性差的 3 类和 4 类化合物,代谢在药物消除中只起次要作用。对于这些渗透性差的药物,摄取转运体是药物生物利用度的主要决定因素,摄取和外排转运体都可能对药物消除很重要。高度渗透性、低溶解度、广泛代谢的 2 类化合物在定义转运体的影响方面呈现出最复杂的关系,因为存在明显的转运体-酶相互作用。摄取转运体对 2 类药物的生物利用度不重要,但可以在肝和肾消除中起主要作用。外排转运体对 2 类药物的生物利用度、吸收、代谢和消除有重大影响。根据高渗透性标准(即>或=90%吸收)准确描述药物是困难的。我们建议,广泛的代谢可以替代高渗透性特征,并且使用消除标准的 BDDCS 可能为所有化合物类别提供药物处置特征的可预测性。

相似文献

1
Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System.
Basic Clin Pharmacol Toxicol. 2010 Mar;106(3):162-7. doi: 10.1111/j.1742-7843.2009.00498.x. Epub 2009 Dec 7.
3
Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption.
Adv Drug Deliv Rev. 2008 Mar 17;60(6):717-33. doi: 10.1016/j.addr.2007.08.043. Epub 2007 Nov 28.
6
BDDCS class prediction for new molecular entities.
Mol Pharm. 2012 Mar 5;9(3):570-80. doi: 10.1021/mp2004302. Epub 2012 Feb 7.
8
Predicting when biliary excretion of parent drug is a major route of elimination in humans.
AAPS J. 2014 Sep;16(5):1085-96. doi: 10.1208/s12248-014-9636-1. Epub 2014 Jul 9.
10
Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS).
Pharm Res. 2015 Dec;32(12):3785-802. doi: 10.1007/s11095-015-1749-4. Epub 2015 Jul 9.

引用本文的文献

1
Food interactions with tyrosine kinase inhibitors used to treat advanced renal cell carcinoma.
Contemp Oncol (Pozn). 2025;29(1):1-10. doi: 10.5114/wo.2025.148229. Epub 2025 Mar 7.
2
Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors.
Asian J Pharm Sci. 2024 Dec;19(6):100980. doi: 10.1016/j.ajps.2024.100980. Epub 2024 Oct 26.
3
Simplifying the Extended Clearance Concept Classification System (EC3S) to Guide Clearance Prediction in Drug Discovery.
Pharm Res. 2023 Apr;40(4):937-949. doi: 10.1007/s11095-023-03482-4. Epub 2023 Mar 1.
8
Evaluation of the Relevance of DILI Predictive Hypotheses in Early Drug Development: Review of Methodologies BDDCS Classification.
Toxicol Res (Camb). 2018 May 8;7(3):358-370. doi: 10.1039/C8TX00016F. Epub 2018 Apr 18.
10
Evaluation of DILI Predictive Hypotheses in Early Drug Development.
Chem Res Toxicol. 2017 Apr 17;30(4):1017-1029. doi: 10.1021/acs.chemrestox.7b00025. Epub 2017 Mar 15.

本文引用的文献

1
The role of transporters in the pharmacokinetics of orally administered drugs.
Pharm Res. 2009 Sep;26(9):2039-54. doi: 10.1007/s11095-009-9924-0. Epub 2009 Jun 30.
2
The use of drug metabolism for prediction of intestinal permeability (dagger).
Mol Pharm. 2009 Jan-Feb;6(1):74-81. doi: 10.1021/mp8001864.
3
Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin.
Drug Metab Dispos. 2008 Oct;36(10):2014-23. doi: 10.1124/dmd.108.021410. Epub 2008 Jul 10.
4
The use of BDDCS in classifying the permeability of marketed drugs.
Pharm Res. 2008 Mar;25(3):483-8. doi: 10.1007/s11095-007-9523-x. Epub 2008 Jan 31.
5
Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption.
Adv Drug Deliv Rev. 2008 Mar 17;60(6):717-33. doi: 10.1016/j.addr.2007.08.043. Epub 2007 Nov 28.
7
effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers.
Clin Pharmacol Ther. 2007 Feb;81(2):194-204. doi: 10.1038/sj.clpt.6100038. Epub 2006 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验