Suppr超能文献

代谢与转运在决定口服药物吸收和肠道壁代谢中的相互作用:应用“先进的溶解、吸收、代谢(ADAM)”模型进行的模拟评估。

Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.

机构信息

Faculty of Pharmacy, Uppsala University, Uppsala, Sweden.

出版信息

Curr Drug Metab. 2010 Nov;11(9):716-29. doi: 10.2174/138920010794328913.

Abstract

Bioavailability of orally administered drugs can be influenced by a number of factors including release from the formulation, dissolution, stability in the gastrointestinal (GI) environment, permeability through the gut wall and first-pass gut wall and hepatic metabolism. Although there are various enzymes in the gut wall which may contribute to gut first pass metabolism, Cytochrome P450 (CYP) 3A has been shown to play a major role. The efflux transporter P-glycoprotein (P-gp; MDR1/ABCB1) is the most extensively studied drug efflux transporter in the gut and might have a significant role in the regulation of GI absorption. Although not every CYP3A substrate will have a high extent of gut wall first-pass extraction, being a substrate for the enzyme increases the likelihood of a higher first-pass extraction. Similarly, being a P-gp substrate does not necessarily pose a problem with the gut wall absorption however it may reduce bioavailability in some cases (e.g. when drug has low passive permeability). An on-going debate has focused on the issue of the interplay between CYP3A and P-gp such that high affinity to P-gp increases the exposure of drug to CYP3A through repeated cycling via passive diffusion and active efflux, decreasing the fraction of drug that escapes first pass gut metabolism (F(G)). The presence of P-gp in the gut wall and the high affinity of some CYP3A substrates to this transporter are postulated to reduce the potential for saturating the enzymes, thus increasing gut wall first-pass metabolism for compounds which otherwise would have saturated CYP3A. Such inferences are based on assumptions in the modelling of oral drug absorption. These models should be as mechanistic as possible and tractable using available in vitro and in vivo information. We review, through simulation, this subject and examine the interplay between gut wall metabolism and efflux transporters by studying the fraction of dose absorbed into enterocytes (F(a)) and F(G) via systematic variation of drug characteristics, in accordance with the Biopharmaceutics Classification System (BCS) within one of the most physiological models of oral drug absorption currently available, respectively ADAM. Variables studied included the intrinsic clearance (CLint) and the Michaelis-Menten Constant (Km) for CYP3A4 and P-gp (C(Lint-CYP3A4) and K(m-CYP3A4), CL(int-P-gp) and K(m-P-gp)). The impact of CYP3A4 and P-gp intracellular topography were not investigated since a well-stirred enterocyte is assumed within ADAM. An increased CLint-CYP3A4 resulted in a reduced F(G) whereas an increase in C(Lint-P-gp) resulted in a reduced F(a), but interestingly decreased F(G) too. The reduction in FG was limited to certain conditions and was modest. Non-linear relationships between various parameters determining the permeability (e.g. P(app), C(Lint-P-gp,) and K(m-P-gp)) and gut wall metabolism (e.g. C(Lint-CYP3A4,) K(m-CYP3A4)) resulted in disproportionate changes in F(G) compared to the magnitude of singular effects. The results suggest that P-gp efflux decreases enterocytic drug concentration for drugs given at reasonably high dose which possess adequate passive permeability (high P(app)), by de-saturating CYP3A4 in the gut resulting in a lower F(G). However, these findings were observed only in a very limited area of the parameters space matching very few therapeutic drugs (a group with very high metabolism, high turn-over by efflux transporters and low F(a)). The systematic approach in this study enabled us to recognise the combination of parameters values where the potential interplay between metabolising enzymes and efflux transporters is expected to be highest, using a realistic range of parameter values taken from an intensive literature search.

摘要

药物经口服给药的生物利用度可受到多种因素的影响,包括制剂的释放、溶解、在胃肠道(GI)环境中的稳定性、通过肠壁的通透性以及首过肠壁和肝脏代谢。尽管肠道壁中有多种可能参与肠道首过代谢的酶,但细胞色素 P450(CYP)3A 已被证明起着主要作用。外排转运蛋白 P-糖蛋白(P-gp;MDR1/ABCB1)是肠道中研究最多的药物外排转运蛋白,可能在调节 GI 吸收方面发挥重要作用。虽然并非每个 CYP3A 底物都具有高度的肠道壁首过提取程度,但作为该酶的底物会增加更高首过提取的可能性。同样,作为 P-gp 的底物并不一定会对肠道壁吸收造成问题,但在某些情况下(例如药物被动通透性低)可能会降低生物利用度。一个持续的争论焦点集中在 CYP3A 和 P-gp 之间相互作用的问题上,即与 P-gp 的高亲和力会通过被动扩散和主动外排的反复循环增加药物与 CYP3A 的接触,从而降低逃避首过肠道代谢的药物比例(F(G))。肠道壁中存在 P-gp 以及一些 CYP3A 底物对该转运蛋白的高亲和力被假设为降低了使酶饱和的可能性,从而增加了化合物的肠道壁首过代谢,否则这些化合物将使 CYP3A 饱和。这些推论基于口服药物吸收模型中的假设。这些模型应尽可能具有机制性,并可使用现有的体外和体内信息进行处理。我们通过模拟回顾了这一主题,并通过研究符合当前可用的最生理口服药物吸收模型之一 ADAM 中的生物药剂学分类系统(BCS)的药物特性的系统变化,分别研究肠道代谢和外排转运体之间的相互作用,来检查肠道壁代谢和外排转运体之间的相互作用,研究了进入肠细胞的剂量分数(F(a))和 F(G),变量包括 CYP3A4 和 P-gp 的内在清除率(CLint)和米氏常数(Km)(C(Lint-CYP3A4) 和 K(m-CYP3A4),CL(int-P-gp) 和 K(m-P-gp))。由于在 ADAM 中假设存在搅拌良好的肠细胞,因此未研究 CYP3A4 和 P-gp 的细胞内拓扑结构的影响。增加 CYP3A4 的 CLint 会导致 F(G)降低,而增加 C(Lint-P-gp)会导致 F(a)降低,但有趣的是,F(G)也降低了。FG 的减少仅限于某些条件,而且幅度适中。决定通透性的各种参数(例如 P(app)、C(Lint-P-gp)和 K(m-P-gp))与肠道壁代谢(例如 C(Lint-CYP3A4)、K(m-CYP3A4))之间的非线性关系导致 F(G)的变化与单一效应的幅度不成比例。结果表明,对于以合理高剂量给予的药物,P-gp 外排通过使肠道中的 CYP3A4 去饱和从而降低 F(G),从而降低了药物在肠细胞中的浓度,这些药物具有足够的被动通透性(高 P(app))。然而,这些发现仅在非常有限的参数空间区域观察到,与极少数治疗药物相匹配(一组具有非常高的代谢率、高外排转运体周转率和低 F(a))。本研究中的系统方法使我们能够识别预计代谢酶和外排转运体之间相互作用最强的参数值组合,使用从密集文献搜索中获取的真实参数值范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验