Suppr超能文献

测量误差对调控网络识别的影响。

The impact of measurement errors in the identification of regulatory networks.

机构信息

Computational Science Research Program, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

出版信息

BMC Bioinformatics. 2009 Dec 13;10:412. doi: 10.1186/1471-2105-10-412.

Abstract

BACKGROUND

There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise.

RESULTS

This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data.

CONCLUSIONS

Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

摘要

背景

文献中有一些研究描述了基因表达数据中的测量误差,也有一些研究描述了调控网络模型。然而,只有一小部分研究描述了数学调控网络中的测量误差,并展示了如何在不同噪声率下识别这些网络。

结果

本文研究了测量误差对调控网络参数估计的影响。模拟研究表明,无论是在时间序列(依赖)数据还是非时间序列(独立)数据中,测量误差都会强烈影响调控网络模型的估计参数,使其偏向于理论预测。此外,在测试调控网络模型的参数时,忽略测量误差计算的 p 值不可靠,因为在零假设下无法控制假阳性率。为了克服这些问题,我们提出了一种在独立(回归模型)和依赖(自回归模型)数据中,当变量受到噪声干扰时,改进的普通最小二乘估计器的版本。此外,还描述了微阵列的测量误差估计程序。模拟结果还表明,两种校正方法都比标准方法(即忽略测量误差)表现更好。所提出的方法学使用肺癌患者的微阵列数据和小鼠肝脏时间序列数据进行了说明。

结论

测量误差会严重影响调控网络模型的识别,因此,必须减少或考虑测量误差,以避免错误的结论。这可能是实际调控网络模型中高生物学假阳性率的原因之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d356/2811120/c72da8c1af6e/1471-2105-10-412-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验