Suppr超能文献

鉴定微孢子虫门广泛存在的兔脑炎原虫转录信号:支持准确的结构基因组注释。

Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation.

机构信息

Clermont Université, Université d'Auvergne, Laboratoire: Microorganismes Génome et Environnement, BP 10448, F-63000 CLERMONT-FERRAND.

出版信息

BMC Genomics. 2009 Dec 15;10:607. doi: 10.1186/1471-2164-10-607.

Abstract

BACKGROUND

Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp) and highly compact (approximately 1 gene/kb) genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia.

RESULTS

To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (<7 nts). Most of the E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae) and Nosema ceranae. Based on these results a systematic analysis of the approximately 2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs) had been badly predicted.

CONCLUSION

We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore, 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.

摘要

背景

微孢子虫是一种专性细胞内真核寄生虫,其基因组大小从 2.3 Mbp 到 20 Mbp 以上不等。人类寄生虫脑炎微孢子虫的极小(2.9 Mbp)和高度紧凑(约 1 个基因/kb)基因组已经完全测序。本研究的目的是描述可能参与脑炎微孢子虫基因表达调控的非编码模体,并展示这些模体是否在微孢子虫门中保守。

结果

为了识别这些信号,我们对不同脑炎微孢子虫的 mRNA 进行了 5'和 3'RACE-PCR 实验。该分析证实,脑炎微孢子虫中转录超越发生,可能是由于随机识别 AAUAAA 多聚腺苷酸化信号。此类实验还显示出高度简化的 5'UTR(<7 个核苷酸)。大多数脑炎微孢子虫基因在编码起始点的上游都有一个 CCC 样模体。为了描述参与差异转录调控的其他信号,我们将注意力集中在编码核糖体蛋白的基因家族上。在 CCC 样模体的上游发现了一个 AAATTT 样信号。在少数情况下,三碱基胞嘧啶被 GGG 样模体取代。比较基因组研究证实,这些不同的信号也位于编码核糖体蛋白的基因上游,这些基因存在于其他微孢子虫物种中,包括 Antonospora locustae、Enterocytozoon bieneusi、Anncaliia algerae(原名 Brachiola algerae)和 Nosema ceranae。基于这些结果,我们对大约 2000 个脑炎微孢子虫编码 DNA 序列进行了系统分析,并强调了 364 个翻译起始密码子(总 CDS 的 18.29%)的预测存在严重错误。

结论

我们确定了参与脑炎微孢子虫 mRNA 成熟的各种信号。这些信号存在于系统发育上相距甚远的微孢子虫物种中,表明微孢子虫之间存在共同的调控机制。此外,由于 5'UTR 被强烈简化,这些信号可用于准确预测微孢子虫基因的翻译起始密码子,并改善微孢子虫基因组注释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32af/2803860/6b011789d47c/1471-2164-10-607-1.jpg

相似文献

4
Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees.
PLoS Pathog. 2009 Jun;5(6):e1000466. doi: 10.1371/journal.ppat.1000466. Epub 2009 Jun 5.
8
The Genome of Nosema sp. Isolate YNPr: A Comparative Analysis of Genome Evolution within the Nosema/Vairimorpha Clade.
PLoS One. 2016 Sep 6;11(9):e0162336. doi: 10.1371/journal.pone.0162336. eCollection 2016.

引用本文的文献

1
MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation.
Int J Mol Sci. 2024 Jan 10;25(2):880. doi: 10.3390/ijms25020880.
2
Functional annotation of a divergent genome using sequence and structure-based similarity.
BMC Genomics. 2024 Jan 2;25(1):6. doi: 10.1186/s12864-023-09924-y.
3
New insights into the genome and transmission of the microsporidian pathogen .
Front Microbiol. 2023 Apr 13;14:1152586. doi: 10.3389/fmicb.2023.1152586. eCollection 2023.
4
Regulation of ribosomal protein genes: An ordered anarchy.
Wiley Interdiscip Rev RNA. 2021 May;12(3):e1632. doi: 10.1002/wrna.1632. Epub 2020 Oct 10.
7
Genomic Survey of a Hyperparasitic Microsporidian Amphiamblys sp. (Metchnikovellidae).
Genome Biol Evol. 2017 Mar 1;9(3):454-467. doi: 10.1093/gbe/evw235.
8
A Recent Whole-Genome Duplication Divides Populations of a Globally Distributed Microsporidian.
Mol Biol Evol. 2016 Aug;33(8):2002-15. doi: 10.1093/molbev/msw083. Epub 2016 Apr 27.
9
Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4116-21. doi: 10.1073/pnas.1517242113. Epub 2016 Mar 29.
10
The Prediction and Validation of Small CDSs Expand the Gene Repertoire of the Smallest Known Eukaryotic Genomes.
PLoS One. 2015 Sep 30;10(9):e0139075. doi: 10.1371/journal.pone.0139075. eCollection 2015.

本文引用的文献

1
Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees.
PLoS Pathog. 2009 Jun;5(6):e1000466. doi: 10.1371/journal.ppat.1000466. Epub 2009 Jun 5.
2
Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi.
PLoS Pathog. 2009 Jan;5(1):e1000261. doi: 10.1371/journal.ppat.1000261. Epub 2009 Jan 9.
3
Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database.
Bioinformatics. 2008 Dec 1;24(23):2672-6. doi: 10.1093/bioinformatics/btn529. Epub 2008 Oct 9.
4
mRNA processing in Antonospora locustae spores.
Mol Genet Genomics. 2008 Dec;280(6):565-74. doi: 10.1007/s00438-008-0387-5. Epub 2008 Sep 26.
5
The RNA polymerase II core promoter - the gateway to transcription.
Curr Opin Cell Biol. 2008 Jun;20(3):253-9. doi: 10.1016/j.ceb.2008.03.003. Epub 2008 Apr 22.
7
Antisense RNA and RNAi in protozoan parasites: working hard or hardly working?
Mol Biochem Parasitol. 2008 Feb;157(2):117-26. doi: 10.1016/j.molbiopara.2007.10.004. Epub 2007 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验