Suppr超能文献

在常规给药方案中,癌症治疗耐药性的演变。

Evolution of resistance to anti-cancer therapy during general dosing schedules.

机构信息

Memorial Sloan-Kettering Cancer Center, Computational Biology Program, New York, NY 10065, USA.

出版信息

J Theor Biol. 2010 Mar 21;263(2):179-88. doi: 10.1016/j.jtbi.2009.11.022. Epub 2009 Dec 11.

Abstract

Anti-cancer drugs targeted to specific oncogenic pathways have shown promising therapeutic results in the past few years; however, drug resistance remains an important obstacle for these therapies. Resistance to these drugs can emerge due to a variety of reasons including genetic or epigenetic changes which alter the binding site of the drug target, cellular metabolism or export mechanisms. Obtaining a better understanding of the evolution of resistant populations during therapy may enable the design of more effective therapeutic regimens which prevent or delay progression of disease due to resistance. In this paper, we use stochastic mathematical models to study the evolutionary dynamics of resistance under time-varying dosing schedules and pharmacokinetic effects. The populations of sensitive and resistant cells are modeled as multi-type non-homogeneous birth-death processes in which the drug concentration affects the birth and death rates of both the sensitive and resistant cell populations in continuous time. This flexible model allows us to consider the effects of generalized treatment strategies as well as detailed pharmacokinetic phenomena such as drug elimination and accumulation over multiple doses. We develop estimates for the probability of developing resistance and moments of the size of the resistant cell population. With these estimates, we optimize treatment schedules over a subspace of tolerated schedules to minimize the risk of disease progression due to resistance as well as locate ideal schedules for controlling the population size of resistant clones in situations where resistance is inevitable. Our methodology can be used to describe dynamics of resistance arising due to a single (epi)genetic alteration in any tumor type.

摘要

在过去的几年中,针对特定致癌途径的抗癌药物在治疗方面取得了有希望的效果;然而,耐药性仍然是这些疗法的一个重要障碍。由于各种原因,包括改变药物靶点结合部位的遗传或表观遗传变化、细胞代谢或外排机制,这些药物可能会出现耐药性。更好地了解治疗过程中耐药群体的演变,可能有助于设计更有效的治疗方案,从而预防或延迟因耐药而导致的疾病进展。在本文中,我们使用随机数学模型来研究在时变给药方案和药代动力学效应下的耐药进化动力学。敏感细胞和耐药细胞群体被建模为多类型非齐次生灭过程,其中药物浓度以连续时间影响敏感和耐药细胞群体的出生率和死亡率。这种灵活的模型使我们能够考虑广义治疗策略的影响,以及详细的药代动力学现象,如多次剂量的药物消除和积累。我们针对耐药性产生的概率和耐药细胞群体规模的矩进行了估计。利用这些估计值,我们在可耐受的治疗方案子空间上对治疗方案进行优化,以最小化耐药性导致疾病进展的风险,以及在耐药性不可避免的情况下,找到控制耐药克隆群体规模的理想方案。我们的方法可以用于描述任何肿瘤类型中由于单个(表观遗传)基因改变而引起的耐药性的动力学。

相似文献

1
Evolution of resistance to anti-cancer therapy during general dosing schedules.
J Theor Biol. 2010 Mar 21;263(2):179-88. doi: 10.1016/j.jtbi.2009.11.022. Epub 2009 Dec 11.
2
Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies.
PLoS Comput Biol. 2009 Nov;5(11):e1000557. doi: 10.1371/journal.pcbi.1000557. Epub 2009 Nov 6.
3
Evolution of acquired resistance to anti-cancer therapy.
J Theor Biol. 2014 Aug 21;355:10-20. doi: 10.1016/j.jtbi.2014.02.025. Epub 2014 Mar 25.
4
Spatial Heterogeneity and Evolutionary Dynamics Modulate Time to Recurrence in Continuous and Adaptive Cancer Therapies.
Cancer Res. 2018 Apr 15;78(8):2127-2139. doi: 10.1158/0008-5472.CAN-17-2649. Epub 2018 Jan 30.
5
Dosage strategies for delaying resistance emergence in heterogeneous tumors.
FEBS Open Bio. 2021 May;11(5):1322-1331. doi: 10.1002/2211-5463.13129. Epub 2021 Mar 30.
8
Integrating evolutionary dynamics into cancer therapy.
Nat Rev Clin Oncol. 2020 Nov;17(11):675-686. doi: 10.1038/s41571-020-0411-1. Epub 2020 Jul 22.
9
10
Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution.
Cancer Res. 2017 Jul 15;77(14):3908-3921. doi: 10.1158/0008-5472.CAN-16-2871. Epub 2017 May 31.

引用本文的文献

1
The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers.
Int J Mol Sci. 2024 Aug 23;25(17):9163. doi: 10.3390/ijms25179163.
2
Optimizing cancer therapy: a review of the multifaceted effects of metronomic chemotherapy.
Front Cell Dev Biol. 2024 May 15;12:1369597. doi: 10.3389/fcell.2024.1369597. eCollection 2024.
3
Intratumoral Heterogeneity in Lung Cancer.
Cancers (Basel). 2023 May 11;15(10):2709. doi: 10.3390/cancers15102709.
4
The influence of tumor heterogeneity on sensitivity of EGFR-mutant lung adenocarcinoma cells to EGFR-TKIs.
Transl Cancer Res. 2019 Sep;8(5):1834-1844. doi: 10.21037/tcr.2019.09.01.
5
Modifying Adaptive Therapy to Enhance Competitive Suppression.
Cancers (Basel). 2020 Nov 28;12(12):3556. doi: 10.3390/cancers12123556.
6
Beyond Deterministic Models in Drug Discovery and Development.
Trends Pharmacol Sci. 2020 Nov;41(11):882-895. doi: 10.1016/j.tips.2020.09.005. Epub 2020 Oct 5.
7
Pharmacokinetic Profiles Determine Optimal Combination Treatment Schedules in Computational Models of Drug Resistance.
Cancer Res. 2020 Aug 15;80(16):3372-3382. doi: 10.1158/0008-5472.CAN-20-0056. Epub 2020 Jun 19.
8
Time scales and wave formation in non-linear spatial public goods games.
PLoS Comput Biol. 2019 Sep 23;15(9):e1007361. doi: 10.1371/journal.pcbi.1007361. eCollection 2019 Sep.
9
Optimization of Cancer Treatment in the Frequency Domain.
AAPS J. 2019 Sep 11;21(6):106. doi: 10.1208/s12248-019-0372-4.
10
Engineered 3D Model of Cancer Stem Cell Enrichment and Chemoresistance.
Neoplasia. 2019 Aug;21(8):822-836. doi: 10.1016/j.neo.2019.06.005. Epub 2019 Jul 9.

本文引用的文献

1
Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies.
PLoS Comput Biol. 2009 Nov;5(11):e1000557. doi: 10.1371/journal.pcbi.1000557. Epub 2009 Nov 6.
2
The evolution of two mutations during clonal expansion.
Genetics. 2007 Dec;177(4):2209-21. doi: 10.1534/genetics.107.078915.
3
MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.
Science. 2007 May 18;316(5827):1039-43. doi: 10.1126/science.1141478. Epub 2007 Apr 26.
4
Evolution of resistance during clonal expansion.
Genetics. 2006 Apr;172(4):2557-66. doi: 10.1534/genetics.105.049791.
5
Stochastic modeling of drug resistance in cancer.
J Theor Biol. 2006 Apr 7;239(3):351-66. doi: 10.1016/j.jtbi.2005.08.003. Epub 2005 Sep 27.
6
Drug resistance in cancer: principles of emergence and prevention.
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9714-9. doi: 10.1073/pnas.0501870102. Epub 2005 Jun 24.
8
EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13306-11. doi: 10.1073/pnas.0405220101. Epub 2004 Aug 25.
9
Evolutionary dynamics of escape from biomedical intervention.
Proc Biol Sci. 2003 Dec 22;270(1533):2573-8. doi: 10.1098/rspb.2003.2539.
10
Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification.
Science. 2001 Aug 3;293(5531):876-80. doi: 10.1126/science.1062538. Epub 2001 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验