Suppr超能文献

Rag 基因的起源——从转座到 V(D)J 重组。

The origins of the Rag genes--from transposition to V(D)J recombination.

机构信息

Laboratory of Cellular and Molecular Biology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.

出版信息

Semin Immunol. 2010 Feb;22(1):10-6. doi: 10.1016/j.smim.2009.11.004. Epub 2009 Dec 9.

Abstract

The recombination activating genes 1 and 2 (Rag1 and Rag2) encode the key enzyme that is required for the generation of the highly diversified antigen receptor repertoire central to adaptive immunity. The longstanding model proposed that this gene pair was acquired by horizontal gene transfer to explain its abrupt appearance in the vertebrate lineage. The analyses of the enormous amount of sequence data created by many genome sequencing projects now provide the basis for a more refined model as to how this unique gene pair evolved from a selfish DNA transposon into a sophisticated DNA recombinase essential for immunity.

摘要

重组激活基因 1 和 2(Rag1 和 Rag2)编码的关键酶对于产生高度多样化的抗原受体库至关重要,而这些受体库是适应性免疫的核心。长期以来,人们一直认为这对基因是通过水平基因转移获得的,这一假说旨在解释其在脊椎动物谱系中的突然出现。许多基因组测序项目所产生的大量序列数据的分析,为这对独特的基因如何从自私的 DNA 转座子进化为免疫必需的复杂 DNA 重组酶提供了更精细的模型。

相似文献

1
The origins of the Rag genes--from transposition to V(D)J recombination.
Semin Immunol. 2010 Feb;22(1):10-6. doi: 10.1016/j.smim.2009.11.004. Epub 2009 Dec 9.
2
New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.
FEBS J. 2017 Jun;284(11):1590-1605. doi: 10.1111/febs.13990. Epub 2017 Jan 6.
3
An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):397-402. doi: 10.1073/pnas.1318843111. Epub 2013 Dec 24.
4
Evolving adaptive immunity.
Genes Dev. 2016 Apr 15;30(8):873-5. doi: 10.1101/gad.281014.116.
5
Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase.
EMBO J. 2020 Nov 2;39(21):e105857. doi: 10.15252/embj.2020105857. Epub 2020 Sep 18.
6
Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.
Genes Dev. 2016 Apr 15;30(8):909-17. doi: 10.1101/gad.278432.116. Epub 2016 Apr 7.
7
New concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2.
Immunol Rev. 2004 Aug;200:261-71. doi: 10.1111/j.0105-2896.2004.00167.x.
8
Regulation of RAG transposition.
Adv Exp Med Biol. 2009;650:16-31. doi: 10.1007/978-1-4419-0296-2_2.
9
The taming of a transposon: V(D)J recombination and the immune system.
Immunol Rev. 2004 Aug;200:233-48. doi: 10.1111/j.0105-2896.2004.00168.x.
10
Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination.
Front Immunol. 2021 Jul 28;12:709165. doi: 10.3389/fimmu.2021.709165. eCollection 2021.

引用本文的文献

1
Transposable elements as instructors of the immune system.
Nat Rev Immunol. 2025 Apr 29. doi: 10.1038/s41577-025-01172-3.
3
Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0018422. doi: 10.1128/mmbr.00184-22. Epub 2023 Nov 27.
5
From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution.
Funct Integr Genomics. 2023 Aug 23;23(3):278. doi: 10.1007/s10142-023-01206-w.
6
Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon.
Nucleic Acids Res. 2023 Jul 21;51(13):6927-6943. doi: 10.1093/nar/gkad474.
7
Different sea urchin RAG-like genes were domesticated to carry out different functions.
Front Immunol. 2023 Jan 16;13:1066510. doi: 10.3389/fimmu.2022.1066510. eCollection 2022.
10
Adaptation and Exaptation: From Small Molecules to Feathers.
J Mol Evol. 2022 Apr;90(2):166-175. doi: 10.1007/s00239-022-10049-1. Epub 2022 Mar 4.

本文引用的文献

1
Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis.
Nat Struct Mol Biol. 2009 May;16(5):499-508. doi: 10.1038/nsmb.1593. Epub 2009 Apr 26.
2
The roles of the RAG1 and RAG2 "non-core" regions in V(D)J recombination and lymphocyte development.
Arch Immunol Ther Exp (Warsz). 2009 Mar-Apr;57(2):105-16. doi: 10.1007/s00005-009-0011-3. Epub 2009 Mar 31.
3
New superfamilies of eukaryotic DNA transposons and their internal divisions.
Mol Biol Evol. 2009 May;26(5):983-93. doi: 10.1093/molbev/msp013. Epub 2009 Jan 27.
4
The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails.
Dev Comp Immunol. 2008;32(10):1221-30. doi: 10.1016/j.dci.2008.03.012. Epub 2008 May 8.
5
A universal classification of eukaryotic transposable elements implemented in Repbase.
Nat Rev Genet. 2008 May;9(5):411-2; author reply 414. doi: 10.1038/nrg2165-c1.
6
Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes.
Biochem Biophys Res Commun. 2008 May 9;369(3):818-23. doi: 10.1016/j.bbrc.2008.02.097. Epub 2008 Feb 29.
7
RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination.
Nature. 2007 Dec 13;450(7172):1106-10. doi: 10.1038/nature06431. Epub 2007 Nov 21.
8
The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18993-8. doi: 10.1073/pnas.0709170104. Epub 2007 Nov 19.
10
It takes a PHD to read the histone code.
Cell. 2006 Jul 14;126(1):22-4. doi: 10.1016/j.cell.2006.06.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验