Suppr超能文献

人类表型数据库的生物学一致性。

The biological coherence of human phenome databases.

机构信息

Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands.

出版信息

Am J Hum Genet. 2009 Dec;85(6):801-8. doi: 10.1016/j.ajhg.2009.10.026.

Abstract

Disease networks are increasingly explored as a complement to networks centered around interactions between genes and proteins. The quality of disease networks is heavily dependent on the amount and quality of phenotype information in phenotype databases of human genetic diseases. We explored which aspects of phenotype database architecture and content best reflect the underlying biology of disease. We used the OMIM-based HPO, Orphanet, and POSSUM phenotype databases for this purpose and devised a biological coherence score based on the sharing of gene ontology annotation to investigate the degree to which phenotype similarity in these databases reflects related pathobiology. Our analyses support the notion that a fine-grained phenotype ontology enhances the accuracy of phenome representation. In addition, we find that the OMIM database that is most used by the human genetics community is heavily underannotated. We show that this problem can easily be overcome by simply adding data available in the POSSUM database to improve OMIM phenotype representations in the HPO. Also, we find that the use of feature frequency estimates--currently implemented only in the Orphanet database--significantly improves the quality of the phenome representation. Our data suggest that there is much to be gained by improving human phenome databases and that some of the measures needed to achieve this are relatively easy to implement. More generally, we propose that curation and more systematic annotation of human phenome databases can greatly improve the power of the phenotype for genetic disease analysis.

摘要

疾病网络越来越多地被探索作为围绕基因和蛋白质相互作用的网络的补充。疾病网络的质量在很大程度上取决于人类遗传疾病表型数据库中表型信息的数量和质量。我们探讨了表型数据库架构和内容的哪些方面最能反映疾病的潜在生物学。为此,我们使用了基于 OMIM 的 HPO、Orphanet 和 POSSUM 表型数据库,并基于基因本体论注释的共享设计了一个生物学一致性评分,以调查这些数据库中表型相似性在多大程度上反映了相关的病理生物学。我们的分析支持这样一种观点,即精细的表型本体可以提高表型的准确性。此外,我们发现最受人类遗传学社区使用的 OMIM 数据库严重注释不足。我们表明,通过简单地添加 POSSUM 数据库中可用的数据来改进 HPO 中的 OMIM 表型表示,可以很容易地解决这个问题。此外,我们发现使用特征频率估计值(目前仅在 Orphanet 数据库中实现)可显著提高表型表示的质量。我们的数据表明,通过改进人类表型数据库可以获得很多收益,而实现这一目标所需的一些措施相对容易实施。更一般地,我们提出,对人类表型数据库的管理和更系统的注释可以极大地提高表型在遗传疾病分析中的作用。

相似文献

1
The biological coherence of human phenome databases.
Am J Hum Genet. 2009 Dec;85(6):801-8. doi: 10.1016/j.ajhg.2009.10.026.
2
A text-mining analysis of the human phenome.
Eur J Hum Genet. 2006 May;14(5):535-42. doi: 10.1038/sj.ejhg.5201585.
3
HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
J Biomed Inform. 2019 Aug;96:103246. doi: 10.1016/j.jbi.2019.103246. Epub 2019 Jun 27.
4
PhenoDis: a comprehensive database for phenotypic characterization of rare cardiac diseases.
Orphanet J Rare Dis. 2018 Jan 25;13(1):22. doi: 10.1186/s13023-018-0765-y.
5
Gene- and Disease-Based Expansion of the Knowledge on Inborn Errors of Immunity.
Front Immunol. 2019 Oct 21;10:2475. doi: 10.3389/fimmu.2019.02475. eCollection 2019.
6
Pathway networks generated from human disease phenome.
BMC Med Genomics. 2018 Sep 14;11(Suppl 3):75. doi: 10.1186/s12920-018-0386-2.
7
The human phenotype ontology.
Clin Genet. 2010 Jun;77(6):525-34. doi: 10.1111/j.1399-0004.2010.01436.x. Epub 2010 Feb 11.
8
Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
J Mol Biol. 2018 Jul 20;430(15):2219-2230. doi: 10.1016/j.jmb.2018.05.006. Epub 2018 May 24.
9
10
Ontological phenotype standards for neurogenetics.
Hum Mutat. 2012 Sep;33(9):1333-9. doi: 10.1002/humu.22112. Epub 2012 Jul 2.

引用本文的文献

1
Closing the 'phenotype gap' in precision medicine: improving what we measure to understand complex disease mechanisms.
Mamm Genome. 2019 Aug;30(7-8):201-211. doi: 10.1007/s00335-019-09810-7. Epub 2019 Aug 19.
2
PhenoDis: a comprehensive database for phenotypic characterization of rare cardiac diseases.
Orphanet J Rare Dis. 2018 Jan 25;13(1):22. doi: 10.1186/s13023-018-0765-y.
3
Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
Bioinformatics. 2017 Apr 1;33(7):1031-1039. doi: 10.1093/bioinformatics/btw737.
6
Phenome-driven disease genetics prediction toward drug discovery.
Bioinformatics. 2015 Jun 15;31(12):i276-83. doi: 10.1093/bioinformatics/btv245.
7
Comparative analysis of a novel disease phenotype network based on clinical manifestations.
J Biomed Inform. 2015 Feb;53:113-20. doi: 10.1016/j.jbi.2014.09.007. Epub 2014 Sep 30.
8
Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome.
Sci Transl Med. 2014 Sep 3;6(252):252ra123. doi: 10.1126/scitranslmed.3009262.
9
Using association rule mining to determine promising secondary phenotyping hypotheses.
Bioinformatics. 2014 Jun 15;30(12):i52-59. doi: 10.1093/bioinformatics/btu260.
10
Human intellectual disability genes form conserved functional modules in Drosophila.
PLoS Genet. 2013 Oct;9(10):e1003911. doi: 10.1371/journal.pgen.1003911. Epub 2013 Oct 31.

本文引用的文献

1
Personal phenotypes to go with personal genomes.
Mol Syst Biol. 2009;5:273. doi: 10.1038/msb.2009.32. Epub 2009 May 19.
2
Elements of morphology: introduction.
Am J Med Genet A. 2009 Jan;149A(1):2-5. doi: 10.1002/ajmg.a.32601.
3
Align human interactome with phenome to identify causative genes and networks underlying disease families.
Bioinformatics. 2009 Jan 1;25(1):98-104. doi: 10.1093/bioinformatics/btn593. Epub 2008 Nov 13.
4
The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease.
Am J Hum Genet. 2008 Nov;83(5):610-5. doi: 10.1016/j.ajhg.2008.09.017. Epub 2008 Oct 23.
5
InterPro: the integrative protein signature database.
Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5. doi: 10.1093/nar/gkn785. Epub 2008 Oct 21.
6
Gene Ontology term overlap as a measure of gene functional similarity.
BMC Bioinformatics. 2008 Aug 4;9:327. doi: 10.1186/1471-2105-9-327.
7
The implications of human metabolic network topology for disease comorbidity.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9880-5. doi: 10.1073/pnas.0802208105. Epub 2008 Jul 3.
8
Modularity in the genetic disease-phenotype network.
FEBS Lett. 2008 Jul 23;582(17):2549-54. doi: 10.1016/j.febslet.2008.06.023. Epub 2008 Jun 26.
9
Network-based global inference of human disease genes.
Mol Syst Biol. 2008;4:189. doi: 10.1038/msb.2008.27. Epub 2008 May 6.
10
Phenome connections.
Trends Genet. 2008 Mar;24(3):103-6. doi: 10.1016/j.tig.2007.12.005. Epub 2008 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验