Zemojtel Tomasz, Köhler Sebastian, Mackenroth Luisa, Jäger Marten, Hecht Jochen, Krawitz Peter, Graul-Neumann Luitgard, Doelken Sandra, Ehmke Nadja, Spielmann Malte, Oien Nancy Christine, Schweiger Michal R, Krüger Ulrike, Frommer Götz, Fischer Björn, Kornak Uwe, Flöttmann Ricarda, Ardeshirdavani Amin, Moreau Yves, Lewis Suzanna E, Haendel Melissa, Smedley Damian, Horn Denise, Mundlos Stefan, Robinson Peter N
Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland. Labor Berlin-Charité Vivantes GmbH, Humangenetik, Föhrer Straße 15, 13353 Berlin, Germany.
Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
Sci Transl Med. 2014 Sep 3;6(252):252ra123. doi: 10.1126/scitranslmed.3009262.
Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic workflow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients' phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics.
疑似遗传病患者中不到一半能得到分子诊断。因此,我们将新一代测序(NGS)、生物信息学和临床数据整合到一个有效的诊断流程中。我们利用2741个已确定的孟德尔疾病基因(疾病相关基因组,DAG)中的变异,开发了一个靶向富集DAG面板(7.1兆碱基),该面板对98%的碱基实现了20倍或更高的覆盖。此外,我们建立了一种计算方法[外显子组的表型解释(PhenIX)],该方法根据人类表型本体(HPO)术语描述的患者表型与3991种孟德尔疾病表型的致病性和语义相似性对变异进行评估和排序。在计算机模拟中,基于变异分数对基因进行排序时,真正的基因排在首位的时间不到5%;而PhenIX将正确的基因排在首位的时间超过86%。在对52例先前已确定突变和已知诊断的患者进行的PhenIX回顾性测试中,正确基因的平均排名为2.1。在对40例未确诊个体的前瞻性研究中,PhenIX分析在11例(28%)中实现了诊断,平均排名为2.4。因此,对DAG进行NGS然后进行表型驱动的生物信息学分析,可以在医学遗传学中实现快速有效的鉴别诊断。