National Research Council, Institute for Biological Science, 100 Sussex Drive, Ottawa, Canada ON K1A 0R6.
Carbohydr Res. 2010 Jan 26;345(2):214-29. doi: 10.1016/j.carres.2009.10.011. Epub 2009 Nov 6.
To commercialize the production of glycolipid adjuvants, their synthesis needs to be both robust and inexpensive. Herein we describe a semi-synthetic approach where the lipid acceptor is derived from the biomass of the archaeon Halobacterium salinarum, and the glycosyl donors are chemically synthesized. This work presents some preliminary results using the promoter system N-iodosuccinimide (NIS) and a stable 0.25 M solution of boron trifluoride-trifluoroethanol (BF(3) x TFE(2)) in dichloromethane. This promoter system allows for the use of peracetyl alkyl(aryl)thioglycosides that are available in high yield from inexpensive disaccharide starting materials by promoting clean glycosylation reactions from which pure product can be easily isolated. Conventional glycosylation using NIS-silver trifluoromethanesulfonate (AgOTf) leads to extensive acetyl transfer to the archaeol acceptor and numerous byproducts that make purification complicated. As part of preliminary structure-adjuvant activity studies, we describe the one-pot synthesis of a gentiobiose beta-Glcp-(1-->6)-Glcp-SEt donor with an O-2 benzoyl group, which can be used to prepare a disaccharide attached to archaeol in 85% overall yield, and the related glycolipid trisaccharide beta-Glcp-(1-->6)-beta-Glcp-(1-->6)-beta-Glcp-(1-->O)-archaeol. The synthesis of the isomeric beta-Glcp-(1-->6)-alpha-Glcp-(1-->O)-archaeol featuring a >10:1 alpha/beta alpha-selective glycosylation using the promoter system N-phenylselenylphthalimide-trifluoromethanesulfonic acid (TfOH) is also presented, along with the adjuvant properties of the corresponding archaeosomes (liposomes comprised entirely of combinations of isoprenoid archaeal-like lipids). These new vaccine formulations extend previous observations that glycolipids are integral to the activation of MHC type I pathways via CD8(+) antigen-specific T-cells. The beta-Glcp-(1-->6)-beta-Glcp-(1-->6)-beta-Glcp-(1-->O)-archaeol trisaccharide is shown to be more active than the Glcp-(1-->6)-beta-Glcp-(1-->O)-archaeol disaccharide.
为了使糖脂佐剂实现商业化生产,其合成方法需要既稳健又廉价。在此,我们描述了一种半合成方法,其中脂质受体来源于古菌盐杆菌的生物质,而糖基供体则通过化学合成得到。这项工作使用 N-碘代丁二酰亚胺(NIS)和稳定的 0.25 M 三氟化硼-三氟乙醇(BF 3 x TFE 2 )在二氯甲烷中的溶液作为启动子系统,展示了一些初步结果。该启动子系统允许使用具有高收率的、可从廉价二糖起始原料获得的全乙酰基烷基(芳基)硫代糖基化合物,从而促进清洁的糖基化反应,可轻松从其中分离出纯产物。使用 NIS-三氟甲磺酸银(AgOTf)进行常规糖基化反应会导致大量乙酰基转移到 archaeol 受体上,并产生许多副产物,使纯化过程变得复杂。作为初步结构-佐剂活性研究的一部分,我们描述了一锅法合成带有 O-2 苯甲酰基的双糖基-β-Glcp-(1-- >6)-Glcp-SEt 供体,可用于制备以 85%总产率连接到 archaeol 上的二糖,以及相关的糖脂三糖β-Glcp-(1-- >6)-β-Glcp-(1-- >6)-β-Glcp-(1-- >O)-archaeol。使用 N-苯硒基邻苯二甲酰亚胺-三氟甲磺酸(TfOH)的高选择性糖基化反应,也可以制备异构的β-Glcp-(1-- >6)-α-Glcp-(1-- >O)-archaeol,该反应的β/α 选择性大于 10:1。还介绍了相应的 archaeosomes(完全由类异戊二烯古菌样脂质组合而成的脂质体)的佐剂特性。这些新的疫苗配方扩展了先前的观察结果,即糖脂通过 CD8+抗原特异性 T 细胞参与 MHC I 途径的激活。与 Glcp-(1-- >6)-β-Glcp-(1-- >O)-archaeol 二糖相比,β-Glcp-(1-- >6)-β-Glcp-(1-- >6)-β-Glcp-(1-- >O)-archaeol 三糖显示出更高的活性。