Suppr超能文献

Representation of a Fisher criterion function in a kernel feature space.

作者信息

Lee Sang Wan, Bien Zeungnam

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.

出版信息

IEEE Trans Neural Netw. 2010 Feb;21(2):333-9. doi: 10.1109/TNN.2009.2036846. Epub 2009 Dec 15.

Abstract

In this brief, we consider kernel methods for classification (Shawe-Taylor and Cristianini, 2004) from a separability point of view and provide a representation of the Fisher criterion function in a kernel feature space. We then show that the value of the Fisher function can be simply computed by using averages of diagonal and off-diagonal blocks of a kernel matrix. This result further serves to reveal that the ideal kernel matrix is a global solution to the problem of maximizing the Fisher criterion function. Its relation to an empirical kernel target alignment is then reported. To demonstrate the usefulness of these theories, we provide an application study for classification of prostate cancer based on microarray data sets. The results show that the parameter of a kernel function can be readily optimized.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验