Suppr超能文献

WallGen 软件,用于构建分层纤维素-半纤维素网络并预测其小变形力学。

WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics.

机构信息

Department of Engineering, College of Engineering and Computer Science, Australian National University, Canberra 0200, Australia.

出版信息

Plant Physiol. 2010 Feb;152(2):774-86. doi: 10.1104/pp.109.146936. Epub 2009 Dec 9.

Abstract

We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.

摘要

我们对细胞壁聚合物的排列和相互作用如何产生初生细胞壁的力学性能知之甚少。因此,我们无法定量评估所提出的细胞壁结构在力学上是否合理,也无法评估改变力学性能的拟议机制的有效性。作为弥补这一不足的一个步骤,我们开发了 WallGen,这是一个用 Fortran 编写的程序(可应要求提供),通过随机自组装构建虚拟纤维素-半纤维素网络,其力学性能可以通过有限元分析进行预测。虚拟壁中的数千个力学元件旨在与纤维素微纤维和半纤维素链的真实壁对应物具有一一对应的空间和力学对应关系。用户定义的输入设置了两种聚合物类型的性质(弹性模量、微纤维和半纤维素链的尺寸、半纤维素分子量)及其群体性质(微纤维取向和体积分数、网络中聚合物的重量百分比)。这允许探索体内可能发生的纳米结构变化的力学后果,并估计某些输入的不确定性将如何影响 WallGen 的力学预测。我们总结了 WallGen 的操作和用户定义输入值的选择,并表明在小位移下多网壁的弹性模量的预测值与测量值重叠。“实验设计”方法系统地探索了输入值的变化如何影响力学性能,并表明改变微纤维取向和/或半纤维素交联的数量可能会改变细胞壁的力学各向异性。

相似文献

引用本文的文献

2
Building an extensible cell wall.构建可扩展的细胞壁。
Plant Physiol. 2022 Jun 27;189(3):1246-1277. doi: 10.1093/plphys/kiac184.
6
Finite Element Modeling of Shape Changes in Plant Cells.植物细胞形状变化的有限元建模。
Plant Physiol. 2018 Jan;176(1):41-56. doi: 10.1104/pp.17.01684. Epub 2017 Dec 11.
7
Multiscale models in the biomechanics of plant growth.植物生长生物力学中的多尺度模型
Physiology (Bethesda). 2015 Mar;30(2):159-66. doi: 10.1152/physiol.00030.2014.
8

本文引用的文献

8
Finite-element analysis of geometrical factors in micro-indentation of pollen tubes.花粉管微压痕中几何因素的有限元分析
Biomech Model Mechanobiol. 2006 Nov;5(4):227-36. doi: 10.1007/s10237-005-0010-1. Epub 2006 Mar 3.
9
Anisotropic expansion of the plant cell wall.植物细胞壁的各向异性膨胀。
Annu Rev Cell Dev Biol. 2005;21:203-22. doi: 10.1146/annurev.cellbio.20.082503.103053.
10
Evidence for in vitro binding of pectin side chains to cellulose.果胶侧链与纤维素体外结合的证据。
Plant Physiol. 2005 Sep;139(1):397-407. doi: 10.1104/pp.105.065912. Epub 2005 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验