Department of Engineering, College of Engineering and Computer Science, Australian National University, Canberra 0200, Australia.
Plant Physiol. 2010 Feb;152(2):774-86. doi: 10.1104/pp.109.146936. Epub 2009 Dec 9.
We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.
我们对细胞壁聚合物的排列和相互作用如何产生初生细胞壁的力学性能知之甚少。因此,我们无法定量评估所提出的细胞壁结构在力学上是否合理,也无法评估改变力学性能的拟议机制的有效性。作为弥补这一不足的一个步骤,我们开发了 WallGen,这是一个用 Fortran 编写的程序(可应要求提供),通过随机自组装构建虚拟纤维素-半纤维素网络,其力学性能可以通过有限元分析进行预测。虚拟壁中的数千个力学元件旨在与纤维素微纤维和半纤维素链的真实壁对应物具有一一对应的空间和力学对应关系。用户定义的输入设置了两种聚合物类型的性质(弹性模量、微纤维和半纤维素链的尺寸、半纤维素分子量)及其群体性质(微纤维取向和体积分数、网络中聚合物的重量百分比)。这允许探索体内可能发生的纳米结构变化的力学后果,并估计某些输入的不确定性将如何影响 WallGen 的力学预测。我们总结了 WallGen 的操作和用户定义输入值的选择,并表明在小位移下多网壁的弹性模量的预测值与测量值重叠。“实验设计”方法系统地探索了输入值的变化如何影响力学性能,并表明改变微纤维取向和/或半纤维素交联的数量可能会改变细胞壁的力学各向异性。