Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
J Neurosci. 2009 Dec 9;29(49):15551-63. doi: 10.1523/JNEUROSCI.3336-09.2009.
The interactions between dopamine and glutamate systems play an essential role in normal brain functions and neuropsychiatric disorders. The mechanism of NMDA receptor regulation through high concentrations of dopamine, however, remains unclear. Here, we show the signaling pathways involved in hyperdopaminergic regulation of NMDA receptor functions in the prefrontal cortex by incubating cortical slices with high concentration of dopamine or administering dopamine reuptake inhibitor 1-(2-[bis-(4-fluorophenyl)methoxy]ethyl)- 4-(3-phenylpropyl)piperazine (GBR12909) in vivo. We found that, under both conditions, the synaptic NMDA receptor-mediated currents were significantly attenuated by excessive dopamine stimulation through activation of D(2) receptors. Furthermore, high dose of dopamine failed to affect NMDA receptor-mediated currents after blockade of NR2B subunits but triggered a dynamin-dependent endocytosis of NMDA receptors. The high-dose dopamine/D(2) receptor-mediated suppression of NMDA receptors was involved in the increase of glycogen synthase kinase-3beta (GSK-3beta) activity, which in turn phosphorylates beta-catenin and disrupts beta-catenin-NR2B interaction, but was dependent on neither Gq11 nor PLC (phospholipase C). Moreover, the hyperdopamine induced by GBR12909 significantly decreased the expression of both surface and intracellular NR2B proteins, as well as NR2B mRNA levels, suggesting an inhibition of protein synthesis. These effects were, however, completely reversed by administration of either GSK-3beta inhibitor or D(2) receptor antagonist. These results therefore suggest that GSK-3beta is required for the hyperdopamine/D(2) receptor-mediated inhibition of NMDA receptors in the prefrontal neurons and these actions may underlie D(2) receptor-mediated psychostimulant effects and hyperdopamine-dependent behaviors in the brain.
多巴胺和谷氨酸系统之间的相互作用在正常的大脑功能和神经精神疾病中起着至关重要的作用。然而,通过高浓度多巴胺调节 NMDA 受体的机制仍不清楚。在这里,我们通过在皮质切片中孵育高浓度多巴胺或在体内给予多巴胺再摄取抑制剂 1-(2-[双-(4-氟苯基)甲氧基]乙基)-4-(3-苯基丙基)哌嗪(GBR12909),展示了涉及前额叶皮层中 NMDA 受体功能的超多巴胺调节的信号通路。我们发现,在这两种情况下,通过激活 D2 受体,过量多巴胺刺激都会显著减弱突触 NMDA 受体介导的电流。此外,高剂量多巴胺在阻断 NR2B 亚基后不会影响 NMDA 受体介导的电流,但会触发 NMDA 受体的 dynamin 依赖性内吞作用。高剂量多巴胺/D2 受体介导的 NMDA 受体抑制参与了糖原合酶激酶-3β(GSK-3β)活性的增加,从而磷酸化β-catenin 并破坏β-catenin-NR2B 相互作用,但既不依赖于 Gq11 也不依赖于 PLC(磷脂酶 C)。此外,GBR12909 引起的高多巴胺显著降低了表面和细胞内 NR2B 蛋白以及 NR2B mRNA 水平的表达,表明蛋白质合成受到抑制。然而,给予 GSK-3β 抑制剂或 D2 受体拮抗剂完全逆转了这些作用。这些结果表明,GSK-3β是前额叶神经元中超多巴胺/D2 受体介导的 NMDA 受体抑制所必需的,这些作用可能是 D2 受体介导的精神兴奋剂作用和大脑中超多巴胺依赖性行为的基础。