United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA.
Am J Physiol Regul Integr Comp Physiol. 2010 Feb;298(2):R341-50. doi: 10.1152/ajpregu.00516.2009. Epub 2009 Dec 9.
The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of 4-day-old rainbow trout myocytes. Supplementing media with 100 nM IGF-I increased protein synthesis by 13% (P < 0.05) and decreased protein degradation by 14% (P < 0.05). Treatment with 1 microM insulin increased protein synthesis by 13% (P < 0.05) and decreased protein degradation by 17% (P < 0.05). Supplementing media containing 0.6 mM leucine with an additional 2.5 mM leucine did not increase protein synthesis rates but reduced rates of protein degradation by 8% (P < 0.05). IGF-I (1 nM-100 nM) and insulin (1 nM-1 microM) independently reduced the abundance of ubiquitin ligase mRNA in a dose-dependent manner, with maximal reductions of approximately 70% for muscle atrophy F-box (Fbx) 32, 40% for Fbx25, and 25% for muscle RING finger-1 (MuRF1, P < 0.05). IGF-I and insulin stimulated phosphorylation of FOXO1 and FOXO4 (P < 0.05), which was inhibited by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, and decreased the abundance of polyubiquitinated proteins by 10-20% (P < 0.05). Supplementing media with leucine reduced Fbx32 expression by 25% (P < 0.05) but did not affect Fbx25 nor MuRF1 transcript abundance. Serum deprivation decreased rates of protein synthesis by 60% (P < 0.05), increased protein degradation by 40% (P < 0.05), and increased expression of all ubiquitin ligases. These data suggest that, similar to mammals, the inhibitory effects of IGF-I and insulin on proteolysis occur via P I3-kinase/protein kinase B signaling and are partially responsible for the ability of these compounds to promote protein accretion.
在 4 天大的虹鳟鱼心肌细胞的原代培养物中,研究了胰岛素样生长因子-I(IGF-I)、胰岛素和亮氨酸对蛋白质周转率以及调节蛋白水解基因表达和蛋白多泛素化途径的影响。在培养基中添加 100 nM IGF-I 可使蛋白质合成增加 13%(P<0.05),并使蛋白质降解减少 14%(P<0.05)。用 1 microM 胰岛素处理可使蛋白质合成增加 13%(P<0.05),并使蛋白质降解减少 17%(P<0.05)。在含有 0.6 mM 亮氨酸的培养基中再添加 2.5 mM 亮氨酸不会增加蛋白质合成率,但会使蛋白质降解率降低 8%(P<0.05)。IGF-I(1 nM-100 nM)和胰岛素(1 nM-1 microM)均可独立地以剂量依赖的方式降低泛素连接酶 mRNA 的丰度,肌肉萎缩 F-box(Fbx)32 的最大降低约为 70%,Fbx25 为 40%,肌肉 RING 指-1(MuRF1)为 25%(P<0.05)。IGF-I 和胰岛素刺激 FOXO1 和 FOXO4 的磷酸化(P<0.05),该磷酸化被磷脂酰肌醇 3-激酶(PI 3-kinase)抑制剂渥曼青霉素抑制,并使多泛素化蛋白的丰度降低 10-20%(P<0.05)。在培养基中添加亮氨酸可使 Fbx32 的表达降低 25%(P<0.05),但不影响 Fbx25 或 MuRF1 的转录丰度。血清剥夺使蛋白质合成率降低 60%(P<0.05),蛋白质降解率增加 40%(P<0.05),并使所有泛素连接酶的表达增加。这些数据表明,与哺乳动物相似,IGF-I 和胰岛素对蛋白水解的抑制作用是通过 PI3-kinase/蛋白激酶 B 信号传导发生的,并且部分负责这些化合物促进蛋白质积累的能力。