Suppr超能文献

真核生物/古菌核糖体翻译因子募集的结构基础。

Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes.

机构信息

Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Kita-10, Nishi-8, Sapporo, 060-0810, Japan.

出版信息

J Biol Chem. 2010 Feb 12;285(7):4747-56. doi: 10.1074/jbc.M109.068098. Epub 2009 Dec 10.

Abstract

The archaeal ribosomal stalk complex has been shown to have an apparently conserved functional structure with eukaryotic pentameric stalk complex; it provides access to eukaryotic elongation factors at levels comparable to that of the eukaryotic stalk. The crystal structure of the archaeal heptameric (P0(P1)(2)(P1)(2)(P1)(2)) stalk complex shows that the rRNA anchor protein P0 consists of an N-terminal rRNA-anchoring domain followed by three separated spine helices on which three P1 dimers bind. Based on the structure, we have generated P0 mutants depleted of any binding site(s) for P1 dimer(s). Factor-dependent GTPase assay of such mutants suggested that the first P1 dimer has higher activity than the others. Furthermore, we constructed a model of the archaeal 50 S with stalk complex by superposing the rRNA-anchoring domain of P0 on the archaeal 50 S. This model indicates that the C termini of P1 dimers where translation factors bind are all localized to the region between the stalk base of the 50 S and P0 spine helices. Together with the mutational experiments we infer that the functional significance of multiple copies of P1 is in creating a factor pool within a limited space near the stalk base of the ribosome.

摘要

古菌核糖体柄复合物已被证明具有与真核五聚体柄复合物明显保守的功能结构;它为真核延伸因子提供了类似于真核柄的进入途径。古菌七聚体(P0(P1)(2)(P1)(2)(P1)(2))柄复合物的晶体结构表明,rRNA 锚蛋白 P0 由一个 N 端 rRNA 锚定结构域组成,其后是三个分离的脊柱螺旋,其上结合了三个 P1 二聚体。基于该结构,我们生成了缺失任何 P1 二聚体结合位点的 P0 突变体。对这些突变体的因子依赖性 GTPase 测定表明,第一个 P1 二聚体比其他二聚体具有更高的活性。此外,我们通过将 P0 的 rRNA 锚定结构域叠加在古菌 50S 上来构建带有柄复合物的古菌 50S 模型。该模型表明,翻译因子结合的 P1 二聚体的 C 末端都定位于 50S 柄基部和 P0 脊柱螺旋之间的区域。结合突变实验,我们推断 P1 的多个拷贝的功能意义在于在核糖体柄基部附近的有限空间内创建一个因子池。

相似文献

1
Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes.
J Biol Chem. 2010 Feb 12;285(7):4747-56. doi: 10.1074/jbc.M109.068098. Epub 2009 Dec 10.
2
Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism.
J Biol Chem. 2007 Nov 9;282(45):32827-33. doi: 10.1074/jbc.M705412200. Epub 2007 Sep 5.
5
Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3748-53. doi: 10.1073/pnas.1112934109. Epub 2012 Feb 21.
7
Binding of translation elongation factors to individual copies of the archaeal ribosomal stalk protein aP1 assembled onto aP0.
Biochem Biophys Res Commun. 2017 Jan 29;483(1):153-158. doi: 10.1016/j.bbrc.2016.12.175. Epub 2016 Dec 29.
8
Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins.
Nucleic Acids Res. 2013 Apr 1;41(6):3635-43. doi: 10.1093/nar/gkt044. Epub 2013 Feb 1.
9
The ribosomal stalk protein is crucial for the action of the conserved ATPase ABCE1.
Nucleic Acids Res. 2018 Sep 6;46(15):7820-7830. doi: 10.1093/nar/gky619.

引用本文的文献

1
Ribosome customization and functional diversification among P-stalk proteins regulate late poxvirus protein synthesis.
Cell Rep. 2025 Jan 28;44(1):115119. doi: 10.1016/j.celrep.2024.115119. Epub 2025 Jan 8.
2
Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association.
J Neurosci. 2023 Apr 5;43(14):2440-2459. doi: 10.1523/JNEUROSCI.1002-22.2023. Epub 2023 Feb 27.
3
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure.
Comput Struct Biotechnol J. 2023 Jan 27;21:1249-1261. doi: 10.1016/j.csbj.2023.01.037. eCollection 2023.
5
Direct visualization of translational GTPase factor pool formed around the archaeal ribosomal P-stalk by high-speed AFM.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32386-32394. doi: 10.1073/pnas.2018975117. Epub 2020 Dec 7.
6
Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22157-22166. doi: 10.1073/pnas.2005301117. Epub 2020 Aug 27.
8
Activation of GCN2 by the ribosomal P-stalk.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4946-4954. doi: 10.1073/pnas.1813352116. Epub 2019 Feb 25.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural and functional characterization of the amino terminal domain of the yeast ribosomal stalk P1 and P2 proteins.
Int J Biochem Cell Biol. 2009 Jun;41(6):1315-22. doi: 10.1016/j.biocel.2008.11.005. Epub 2008 Nov 25.
3
Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism.
J Biol Chem. 2007 Nov 9;282(45):32827-33. doi: 10.1074/jbc.M705412200. Epub 2007 Sep 5.
4
Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: analysis of L11 movements.
J Mol Biol. 2007 Aug 24;371(4):1047-59. doi: 10.1016/j.jmb.2007.05.091. Epub 2007 Jun 4.
6
The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain.
J Mol Biol. 2007 Jan 12;365(2):468-79. doi: 10.1016/j.jmb.2006.10.025. Epub 2006 Oct 27.
8
Yeast ribosomal P0 protein has two separate binding sites for P1/P2 proteins.
Mol Microbiol. 2006 Apr;60(2):386-400. doi: 10.1111/j.1365-2958.2006.05117.x.
9
LAFIRE: software for automating the refinement process of protein-structure analysis.
Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):189-96. doi: 10.1107/S0907444905038965. Epub 2006 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验