Suppr超能文献

古菌核糖体柄蛋白通过其保守的 C 末端以核苷酸非依赖的方式与翻译因子相互作用。

Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus.

机构信息

Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Kita-10, Nishi-8, Sapporo 060-0810, Japan.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3748-53. doi: 10.1073/pnas.1112934109. Epub 2012 Feb 21.

Abstract

Protein synthesis on the ribosome requires translational GTPase factors to bind to the ribosome in the GTP-bound form, take individual actions that are coupled with GTP hydrolysis, and dissociate, usually in the GDP-bound form. The multiple copies of the flexible ribosomal stalk protein play an important role in these processes. Using biochemical approaches and the stalk protein from a hyperthermophilic archaeon, Pyrococcus horikoshii, we here provide evidence that the conserved C terminus of the stalk protein aP1 binds directly to domain I of the elongation factor aEF-2, irrespective of whether aEF-2 is bound to GTP or GDP. Site-directed mutagenesis revealed that four hydrophobic amino acids at the C terminus of aP1, Leu-100, 103, 106, and Phe-107, are crucial for the direct binding. P1 was also found to bind to the initiation factor aIF5B, as well as aEF-1α, but not aIF2γ, via its C terminus. Moreover, analytical ultracentrifugation and gel mobility shift analyses showed that a heptameric complex of aP1 and aP0, aP0(aP1)(2)(aP1)(2)(aP1)(2), can bind multiple aEF-2 molecules simultaneously, which suggests that individual copies of the stalk protein are accessible to the factor. The functional significance of the C terminus of the stalk protein was also shown using the eukaryotic proteins P1/P2 and P0. It is likely that the conserved C terminus of the stalk proteins of archaea and eukaryotes can bind to translation factors both before and after GTP hydrolysis. This consistent binding ability of the stalk protein may contribute to maintaining high concentrations of translation factors around the ribosome, thus promoting translational efficiency.

摘要

核糖体上的蛋白质合成需要翻译 GTPase 因子以结合到核糖体的 GTP 结合形式,进行与 GTP 水解偶联的单独作用,并解离,通常为 GDP 结合形式。多个柔性核糖体柄蛋白的副本在这些过程中发挥重要作用。使用生化方法和来自高温古菌 Pyrococcus horikoshii 的柄蛋白,我们在这里提供证据表明,柄蛋白 aP1 的保守 C 端直接结合到延伸因子 aEF-2 的结构域 I,无论 aEF-2 是否结合 GTP 或 GDP。定点突变显示 aP1 的 C 端的四个疏水性氨基酸,亮氨酸 100、103、106 和苯丙氨酸 107,对于直接结合至关重要。还发现 P1 通过其 C 端与起始因子 aIF5B 以及 aEF-1α 结合,但不与 aIF2γ 结合。此外,分析超速离心和凝胶迁移率 shift 分析表明,aP1 和 aP0 的七聚体复合物,aP0(aP1)(2)(aP1)(2)(aP1)(2),可以同时结合多个 aEF-2 分子,这表明柄蛋白的单个副本可以接触到因子。使用真核蛋白 P1/P2 和 P0 还显示了柄蛋白 C 端的功能意义。很可能古菌和真核生物的柄蛋白的保守 C 端可以在 GTP 水解前后结合翻译因子。柄蛋白的这种一致的结合能力可能有助于维持核糖体周围翻译因子的高浓度,从而提高翻译效率。

相似文献

9
Structure and function of the acidic ribosomal stalk proteins.酸性核糖体柄蛋白的结构与功能
Curr Protein Pept Sci. 2002 Feb;3(1):93-106. doi: 10.2174/1389203023380756.

引用本文的文献

4
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure.古菌/真核生物特异性核糖体蛋白——复杂结构的守护者
Comput Struct Biotechnol J. 2023 Jan 27;21:1249-1261. doi: 10.1016/j.csbj.2023.01.037. eCollection 2023.

本文引用的文献

6
The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA.核糖体结合 EF-Tu 和氨酰-tRNA 的晶体结构。
Science. 2009 Oct 30;326(5953):688-694. doi: 10.1126/science.1179700. Epub 2009 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验