Suppr超能文献

白念珠菌中的 Rap1:一种不寻常的结构组织和在抑制端粒重组中的关键功能。

Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination.

机构信息

Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Ave., New York, New York 10021, USA.

出版信息

Mol Cell Biol. 2010 Mar;30(5):1254-68. doi: 10.1128/MCB.00986-09. Epub 2009 Dec 14.

Abstract

Rap1 (repressor activator protein 1) is a conserved multifunctional protein initially identified as a transcriptional regulator of ribosomal protein genes in Saccharomyces cerevisiae but subsequently shown to play diverse functions at multiple chromosomal loci, including telomeres. The function of Rap1 appears to be evolutionarily plastic, especially in the budding yeast lineages. We report here our biochemical and molecular genetic characterizations of Candida albicans Rap1, which exhibits an unusual, miniaturized domain organization in comparison to the S. cerevisiae homologue. We show that in contrast to S. cerevisiae, C. albicans RAP1 is not essential for cell viability but is critical for maintaining normal telomere length and structure. The rap1 null mutant exhibits drastic telomere-length dysregulation and accumulates high levels of telomere circles, which can be largely attributed to aberrant recombination activities at telomeres. Analysis of combination mutants indicates that Rap1 and other telomere proteins mediate overlapping but nonredundant roles in telomere protection. Consistent with the telomere phenotypes of the mutant, C. albicans Rap1 is localized to telomeres in vivo and recognizes the unusual telomere repeat unit with high affinity and sequence specificity in vitro. The DNA-binding Myb domain of C. albicans Rap1 is sufficient to suppress most of the telomere aberrations observed in the null mutant. Notably, we were unable to detect specific binding of C. albicans Rap1 to gene promoters in vivo or in vitro, suggesting that its functions are more circumscribed in this organism. Our findings provide insights on the evolution and mechanistic plasticity of a widely conserved and functionally critical telomere component.

摘要

Rap1(转录激活蛋白 1)是一种保守的多功能蛋白,最初在酿酒酵母中被鉴定为核糖体蛋白基因的转录调控因子,但随后在多个染色体位置(包括端粒)显示出多种功能。Rap1 的功能似乎具有进化可塑性,尤其是在出芽酵母谱系中。我们在这里报告了我们对白色念珠菌 Rap1 的生化和分子遗传特征的研究,与酿酒酵母同源物相比,它表现出不寻常的简化结构域组织。我们表明,与酿酒酵母不同,C. albicans RAP1 不是细胞活力所必需的,但对于维持正常的端粒长度和结构至关重要。rap1 缺失突变体表现出明显的端粒长度失调,并积累高水平的端粒环,这主要归因于端粒的异常重组活性。组合突变体的分析表明,Rap1 和其他端粒蛋白在端粒保护中发挥重叠但非冗余的作用。与突变体的端粒表型一致,C. albicans Rap1 在体内定位于端粒,并在体外以高亲和力和序列特异性识别不寻常的端粒重复单元。C. albicans Rap1 的 DNA 结合 Myb 结构域足以抑制在缺失突变体中观察到的大多数端粒异常。值得注意的是,我们无法在体内或体外检测到 C. albicans Rap1 与基因启动子的特异性结合,这表明其在该生物体中的功能更为有限。我们的发现为广泛保守且功能关键的端粒成分的进化和机制可塑性提供了新的见解。

相似文献

1
Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination.
Mol Cell Biol. 2010 Mar;30(5):1254-68. doi: 10.1128/MCB.00986-09. Epub 2009 Dec 14.
2
Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants.
J Mol Biol. 2008 Jul 11;380(3):520-31. doi: 10.1016/j.jmb.2008.04.078. Epub 2008 May 17.
4
A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms.
Nat Struct Mol Biol. 2011 Feb;18(2):213-21. doi: 10.1038/nsmb.1974. Epub 2011 Jan 9.
5
Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site.
J Biol Chem. 2010 Nov 12;285(46):35814-24. doi: 10.1074/jbc.M110.170167. Epub 2010 Sep 7.
6
The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes.
Biochemistry. 2014 Dec 9;53(48):7471-83. doi: 10.1021/bi501049b. Epub 2014 Nov 21.
7
Transcription factor substitution during the evolution of fungal ribosome regulation.
Mol Cell. 2008 Mar 14;29(5):552-62. doi: 10.1016/j.molcel.2008.02.006.
10
Functional analysis of CaRAP1, encoding the Repressor/activator protein 1 of Candida albicans.
Gene. 2003 Mar 27;307:151-8. doi: 10.1016/s0378-1119(03)00456-6.

引用本文的文献

1
Deletion of affects iron homeostasis, azole resistance, and virulence in .
mSphere. 2025 May 27;10(5):e0015525. doi: 10.1128/msphere.00155-25. Epub 2025 Apr 23.
3
Unwrap RAP1's Mystery at Kinetoplastid Telomeres.
Biomolecules. 2024 Jan 4;14(1):67. doi: 10.3390/biom14010067.
4
Associations of Rap1 with Cell Wall Integrity, Biofilm Formation, and Virulence in Candida albicans.
Microbiol Spectr. 2022 Dec 21;10(6):e0328522. doi: 10.1128/spectrum.03285-22. Epub 2022 Nov 23.
5
In silico characterization of molecular factors involved in metabolism and pathogenicity of Phytophthora cinnamomi.
Mol Biol Rep. 2022 Feb;49(2):1463-1473. doi: 10.1007/s11033-021-06901-0. Epub 2021 Nov 9.
6
Keeping Balance Between Genetic Stability and Plasticity at the Telomere and Subtelomere of .
Front Cell Dev Biol. 2021 Jul 5;9:699639. doi: 10.3389/fcell.2021.699639. eCollection 2021.
7
Telomeric and Sub-Telomeric Structure and Implications in Fungal Opportunistic Pathogens.
Microorganisms. 2021 Jun 29;9(7):1405. doi: 10.3390/microorganisms9071405.
8
The Roles of Chromatin Accessibility in Regulating the White-Opaque Phenotypic Switch.
J Fungi (Basel). 2021 Jan 9;7(1):37. doi: 10.3390/jof7010037.
9
RAP1 has an unusual duplex DNA binding activity required for its telomere localization and VSG silencing.
Sci Adv. 2020 Sep 18;6(38). doi: 10.1126/sciadv.abc4065. Print 2020 Sep.
10
Twenty years of t-loops: A case study for the importance of collaboration in molecular biology.
DNA Repair (Amst). 2020 Oct;94:102901. doi: 10.1016/j.dnarep.2020.102901. Epub 2020 Jun 26.

本文引用的文献

1
Chromosome end maintenance by telomerase.
J Biol Chem. 2009 Jun 12;284(24):16061-16065. doi: 10.1074/jbc.R900011200. Epub 2009 Mar 12.
2
Closing the feedback loop: how cells "count" telomere-bound proteins.
Mol Cell. 2009 Feb 27;33(4):413-4. doi: 10.1016/j.molcel.2009.02.001.
3
A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3.
Nat Struct Mol Biol. 2008 Sep;15(9):985-9. doi: 10.1038/nsmb.1471.
4
A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans.
BMC Genomics. 2008 Dec 2;9:578. doi: 10.1186/1471-2164-9-578.
6
Unusual telomeric DNAs in human telomerase-negative immortalized cells.
Mol Cell Biol. 2009 Feb;29(3):703-13. doi: 10.1128/MCB.00603-08. Epub 2008 Nov 17.
7
How shelterin protects mammalian telomeres.
Annu Rev Genet. 2008;42:301-34. doi: 10.1146/annurev.genet.41.110306.130350.
8
Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants.
J Mol Biol. 2008 Jul 11;380(3):520-31. doi: 10.1016/j.jmb.2008.04.078. Epub 2008 May 17.
9
Multiple pathways inhibit NHEJ at telomeres.
Genes Dev. 2008 May 1;22(9):1153-8. doi: 10.1101/gad.455108.
10
Transcription factor substitution during the evolution of fungal ribosome regulation.
Mol Cell. 2008 Mar 14;29(5):552-62. doi: 10.1016/j.molcel.2008.02.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验