Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215, Bratislava, Slovakia.
Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.
DNA Repair (Amst). 2020 Oct;94:102901. doi: 10.1016/j.dnarep.2020.102901. Epub 2020 Jun 26.
Collaborative studies open doors to breakthroughs otherwise unattainable by any one laboratory alone. Here we describe the initial collaboration between the Griffith and de Lange laboratories that led to thinking about the telomere as a DNA template for homologous recombination, the proposal of telomere looping, and the first electron micrographs of t-loops. This was followed by collaborations that revealed t-loops across eukaryotic phyla. The Griffith and Tomáška/Nosek collaboration revealed circular telomeric DNA (t-circles) derived from the linear mitochondrial chromosomes of nonconventional yeast, which spurred discovery of t-circles in ALT-positive human cells. Collaborative work between the Griffith and McEachern labs demonstrated t-loops and t-circles in a series of yeast species. The de Lange and Zhuang laboratories then applied super-resolution light microscopy to demonstrate a genetic role for TRF2 in loop formation. Recent work from the Griffith laboratory linked telomere transcription with t-loop formation, providing a new model of the t-loop junction. A recent collaboration between the Cesare and Gaus laboratories utilized super-resolution light microscopy to provide details about t-loops as protective elements, followed by the Boulton and Cesare laboratories showing how cell cycle regulation of TRF2 and RTEL enables t-loop opening and reformation to promote telomere replication. Twenty years after the discovery of t-loops, we reflect on the collective history of their research as a case study in collaborative molecular biology.
合作研究为突破单一实验室难以实现的目标开辟了道路。在这里,我们描述了 Griffith 和 de Lange 实验室之间的首次合作,这导致了将端粒视为同源重组的 DNA 模板、提出端粒环化以及首次观察到 t 环的电子显微镜照片的想法。随后的合作揭示了真核生物门中存在的 t 环。Griffith 和 Tomáška/Nosek 的合作揭示了来自非传统酵母线性线粒体染色体的环状端粒 DNA(t 环),这促使人们发现了 ALT 阳性人类细胞中的 t 环。Griffith 和 McEachern 实验室之间的合作在一系列酵母物种中证明了 t 环和 t 环的存在。de lange 和 Zhuang 实验室随后应用超分辨率荧光显微镜证明了 TRF2 在环形成中的遗传作用。最近 Griffith 实验室的工作将端粒转录与 t 环形成联系起来,为 t 环连接提供了新的模型。最近 Cesare 和 Gaus 实验室之间的合作利用超分辨率荧光显微镜提供了有关 t 环作为保护元件的细节,随后 Boulton 和 Cesare 实验室展示了 TRF2 和 RTEL 的细胞周期调控如何能够打开和重新形成 t 环以促进端粒复制。在发现 t 环 20 年后,我们回顾了它们作为合作分子生物学案例研究的集体历史。