Suppr超能文献

儿科感染性休克患者白细胞亚群的全基因组表达谱

Leukocyte subset-derived genomewide expression profiles in pediatric septic shock.

机构信息

Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

出版信息

Pediatr Crit Care Med. 2010 May;11(3):349-55. doi: 10.1097/PCC.0b013e3181c519b4.

Abstract

OBJECTIVE

To directly assess whether genomewide expression profiles derived from leukocyte subsets are comparable to that of whole blood as measured by enrichment for genes corresponding to metabolic and signaling pathways.

DESIGN

Prospective observational study involving microarray-based bioinformatics based on RNA individually derived from whole blood, neutrophils, monocytes, and lymphocytes, respectively.

SETTING

Three pediatric intensive care units in the United States.

PATIENTS

Children < or =10 yrs of age: five normal control subjects and 13 meeting criteria for septic shock on day 1 of presentation to the pediatric intensive care unit.

INTERVENTIONS

None other than standard care.

MEASUREMENTS AND MAIN RESULTS

Baseline analyses using whole blood-derived RNA demonstrated increased expression of genes corresponding to signaling pathways involving innate immunity, redox balance, and protein ubiquitination and decreased expression of genes corresponding to the adaptive immune system. Subsequent analyses using leukocyte-specific RNA were congruent with the gene expression profiles demonstrated using whole blood-derived RNA as measured by enrichment for genes corresponding to metabolic and signaling pathways. Gene network analysis, derived from a composite gene list involving the individual gene expression profiles of neutrophils, monocytes, and lymphocytes, respectively, revealed a gene network corresponding to antigen presentation, cell-mediated immunity, and humoral-mediated immunity. Finally, a subanalysis focused on network gene nodes localized to the nuclear compartment revealed functional annotations related to transcriptional repression and epigenetic regulation.

CONCLUSIONS

These data demonstrate that genome-level repression of adaptive immunity gene programs early in the course of pediatric septic shock remained evident when analyses were conducted using leukocyte subset-specific RNA.

摘要

目的

直接评估通过富集代谢和信号通路相关基因,从白细胞亚群中获得的全基因组表达谱是否与全血相当。

设计

前瞻性观察性研究,涉及基于微阵列的生物信息学,分别基于全血、中性粒细胞、单核细胞和淋巴细胞中各自分离的 RNA。

地点

美国三个儿科重症监护病房。

患者

<或=10 岁的儿童:5 名正常对照者和 13 名在入儿科重症监护病房的第 1 天符合败血症性休克标准的患者。

干预措施

除标准治疗外无其他干预。

测量和主要结果

使用全血衍生的 RNA 进行的基线分析显示,涉及固有免疫、氧化还原平衡和蛋白质泛素化的信号通路相关基因表达增加,而适应免疫系统相关基因表达减少。随后使用白细胞特异性 RNA 进行的分析与使用全血衍生 RNA 进行的基因表达谱一致,如通过富集代谢和信号通路相关基因来衡量。源自涉及中性粒细胞、单核细胞和淋巴细胞各自的单个基因表达谱的复合基因列表的基因网络分析,揭示了一个与抗原呈递、细胞介导的免疫和体液介导的免疫相对应的基因网络。最后,一个侧重于网络基因节点定位于核区室的子分析揭示了与转录抑制和表观遗传调控相关的功能注释。

结论

这些数据表明,在儿科败血症性休克发生的早期,适应性免疫基因程序的全基因组抑制在使用白细胞亚群特异性 RNA 进行分析时仍然明显。

相似文献

1
Leukocyte subset-derived genomewide expression profiles in pediatric septic shock.
Pediatr Crit Care Med. 2010 May;11(3):349-55. doi: 10.1097/PCC.0b013e3181c519b4.
3
Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock.
Mol Med. 2007 Sep-Oct;13(9-10):495-508. doi: 10.2119/2007-00065.Shanley.
4
Corticosteroids are associated with repression of adaptive immunity gene programs in pediatric septic shock.
Am J Respir Crit Care Med. 2014 Apr 15;189(8):940-6. doi: 10.1164/rccm.201401-0171OC.
5
Validation of a gene expression-based subclassification strategy for pediatric septic shock.
Crit Care Med. 2011 Nov;39(11):2511-7. doi: 10.1097/CCM.0b013e3182257675.
7
Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome.
Physiol Genomics. 2007 Jul 18;30(2):146-55. doi: 10.1152/physiolgenomics.00024.2007. Epub 2007 Mar 20.
8
Transcriptomic Profiles in Children With Septic Shock With or Without Immunoparalysis.
Front Immunol. 2021 Oct 1;12:733834. doi: 10.3389/fimmu.2021.733834. eCollection 2021.
9
Validating the genomic signature of pediatric septic shock.
Physiol Genomics. 2008 Jun 12;34(1):127-34. doi: 10.1152/physiolgenomics.00025.2008. Epub 2008 May 6.
10
The influence of developmental age on the early transcriptomic response of children with septic shock.
Mol Med. 2011;17(11-12):1146-56. doi: 10.2119/molmed.2011.00169. Epub 2011 Jul 5.

引用本文的文献

1
Transcriptome analysis of six tissues obtained post-mortem from sepsis patients.
J Cell Mol Med. 2023 Oct;27(20):3157-3167. doi: 10.1111/jcmm.17938. Epub 2023 Sep 20.
2
Moderate exercise-induced dynamics on key sepsis-associated signaling pathways in the liver.
Crit Care. 2023 Jul 5;27(1):266. doi: 10.1186/s13054-023-04551-1.
3
Interrogating the sepsis host immune response using cytomics.
Crit Care. 2023 Mar 21;27(1):93. doi: 10.1186/s13054-023-04366-0.
4
Redefining critical illness.
Nat Med. 2022 Jun;28(6):1141-1148. doi: 10.1038/s41591-022-01843-x. Epub 2022 Jun 17.
7
Why COVID-19 is less frequent and severe in children: a narrative review.
World J Pediatr. 2021 Feb;17(1):10-20. doi: 10.1007/s12519-020-00392-y. Epub 2020 Sep 25.
8
COVID-19 pathophysiology: A review.
Clin Immunol. 2020 Jun;215:108427. doi: 10.1016/j.clim.2020.108427. Epub 2020 Apr 20.
9
COVID-19 in children and altered inflammatory responses.
Pediatr Res. 2020 Sep;88(3):340-341. doi: 10.1038/s41390-020-0881-y. Epub 2020 Apr 3.
10
Gene Expression Profiles in Children With Suspected Sepsis.
Ann Emerg Med. 2020 Jun;75(6):744-754. doi: 10.1016/j.annemergmed.2019.09.020. Epub 2020 Jan 23.

本文引用的文献

1
Novel pharmacologic approaches to the management of sepsis: targeting the host inflammatory response.
Recent Pat Inflamm Allergy Drug Discov. 2009 Jun;3(2):96-112. doi: 10.2174/187221309788489779.
2
ToppGene Suite for gene list enrichment analysis and candidate gene prioritization.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11. doi: 10.1093/nar/gkp427. Epub 2009 May 22.
4
Sepsis alters the megakaryocyte-platelet transcriptional axis resulting in granzyme B-mediated lymphotoxicity.
Am J Respir Crit Care Med. 2009 Mar 15;179(6):467-73. doi: 10.1164/rccm.200807-1085OC. Epub 2009 Jan 8.
5
The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria.
Blood. 2009 Jan 22;113(4):887-92. doi: 10.1182/blood-2008-07-167064. Epub 2008 Oct 10.
6
Interleukin-8 as a stratification tool for interventional trials involving pediatric septic shock.
Am J Respir Crit Care Med. 2008 Aug 1;178(3):276-82. doi: 10.1164/rccm.200801-131OC. Epub 2008 May 29.
7
Validating the genomic signature of pediatric septic shock.
Physiol Genomics. 2008 Jun 12;34(1):127-34. doi: 10.1152/physiolgenomics.00025.2008. Epub 2008 May 6.
8
Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes.
J Leukoc Biol. 2008 Mar;83(3):439-46. doi: 10.1189/jlb.0607357. Epub 2007 Nov 16.
9
Pediatric septic shock treatment: new clues from genomic profiling.
Pharmacogenomics. 2007 Oct;8(10):1287-90. doi: 10.2217/14622416.8.10.1287.
10
Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock.
Mol Med. 2007 Sep-Oct;13(9-10):495-508. doi: 10.2119/2007-00065.Shanley.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验