Suppr超能文献

循环训练增加了快肌纤维中的 GLUT4 和雷帕霉素靶蛋白的激活。

Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers.

机构信息

Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.

出版信息

Med Sci Sports Exerc. 2010 Jan;42(1):96-106. doi: 10.1249/MSS.0b013e3181ad7f36.

Abstract

PURPOSE

To determine whether cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed 6 wk of progressively increasing intensity stationary cycle cycling.

METHODS

In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections.

RESULTS

GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha and phospho-5'-adenosine monophosphate-activated protein kinase) were unchanged, but the muscle hypertrophy pathway component, phospho-mammalian target of rapamycin (mTOR), increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training but also increased in Type I fibers (34%).

CONCLUSION

Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers, and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis.

摘要

目的

确定对久坐的受试者进行循环训练是否会增加主要肌肉葡萄糖转运体的表达。方法:6 名志愿者完成了 6 周逐渐增加强度的固定自行车循环运动,在股外侧肌活检中,使用定量免疫印迹法和特定的蛋白质标准比较 GLUT1、GLUT4、GLUT5 和 GLUT12 的表达变化。通过肌肉匀浆的免疫印迹和显微镜切片的免疫组织化学评估调节途径成分。结果:GLUT1 不变,GLUT4 增加 66%,GLUT12 增加 104%,GLUT5 减少 72%。线粒体标志物(细胞色素 c)和线粒体生物发生调节剂(过氧化物酶体增殖物激活受体γ共激活因子 1α和磷酸 5'-腺苷单磷酸激活蛋白激酶)不变,但肌肉肥大途径成分磷酸化哺乳动物雷帕霉素靶蛋白(mTOR)在运动方案后增加了 83%。在基线活检中,通过免疫组织化学技术,I 型(慢收缩,红色)肌纤维中的 GLUT4 增加了 37%,但运动训练使 II 型(快收缩,白色)纤维中的 GLUT4 增加了 50%,与 I 型纤维达到平衡。基线磷酸化 mTOR 表达在 II 型纤维中高 50%,训练后 II 型纤维增加更多(62%),但 I 型纤维也增加(34%)。结论:对以前久坐的受试者进行渐进强度固定自行车训练可增加肌肉胰岛素反应性葡萄糖转运体(GLUT4 和 GLUT12)并减少果糖转运体(GLUT5)。GLUT4 的增加主要发生在 II 型肌纤维中,这与 mTOR 肌肉肥大途径的激活相一致。对 I 型纤维 GLUT4 表达几乎没有影响,并且没有证据表明线粒体生物发生发生变化。

相似文献

1
Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers.
Med Sci Sports Exerc. 2010 Jan;42(1):96-106. doi: 10.1249/MSS.0b013e3181ad7f36.
2
Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle.
Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E1067-73. doi: 10.1152/ajpendo.00250.2006. Epub 2006 Jun 27.
3
Insulin responsiveness in metabolic syndrome after eight weeks of cycle training.
Med Sci Sports Exerc. 2013 Nov;45(11):2021-9. doi: 10.1249/MSS.0b013e31829a6ce8.
4
Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training.
J Clin Endocrinol Metab. 2011 Jun;96(6):1815-26. doi: 10.1210/jc.2010-2532. Epub 2011 Apr 20.
5
Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway.
Am J Physiol Endocrinol Metab. 2004 Oct;287(4):E686-95. doi: 10.1152/ajpendo.00103.2004. Epub 2004 May 27.
6
Muscle hypertrophy in prediabetic men after 16 wk of resistance training.
J Appl Physiol (1985). 2017 Oct 1;123(4):894-901. doi: 10.1152/japplphysiol.00023.2017. Epub 2017 Jun 29.
7
Insulin-stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle.
J Clin Endocrinol Metab. 2009 Sep;94(9):3535-42. doi: 10.1210/jc.2009-0162. Epub 2009 Jun 23.
9
GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle.
Diabetes. 2017 Jun;66(6):1491-1500. doi: 10.2337/db16-1075. Epub 2017 Mar 9.
10
Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift.
Diabetes. 2007 Aug;56(8):2062-9. doi: 10.2337/db07-0255. Epub 2007 May 18.

引用本文的文献

2
Conditioning-induced expression of novel glucose transporters in canine skeletal muscle homogenate.
PLoS One. 2023 May 3;18(5):e0285424. doi: 10.1371/journal.pone.0285424. eCollection 2023.
3
Relationship between physical exercise and COVID-19 (SARS-CoV-2): systematic review.
Sport Sci Health. 2023;19(1):55-67. doi: 10.1007/s11332-022-01028-6. Epub 2023 Jan 7.
5
Queueing theory model of mTOR complexes' impact on Akt-mediated adipocytes response to insulin.
PLoS One. 2022 Dec 27;17(12):e0279573. doi: 10.1371/journal.pone.0279573. eCollection 2022.
6
EFFECT OF AEROBIC AND ANAEROBIC TRAINING ON DIFFERENT ERGOMETERS IN RAT MUSCLE AND HEART TISSUES.
Acta Ortop Bras. 2022 Dec 2;30(spe2):e248048. doi: 10.1590/1413-785220223002e248048. eCollection 2022.
10
The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle.
Eur J Appl Physiol. 2021 Oct;121(10):2913-2924. doi: 10.1007/s00421-021-04758-6. Epub 2021 Jul 1.

本文引用的文献

1
Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain?
Exerc Sport Sci Rev. 2008 Apr;36(2):58-63. doi: 10.1097/JES.0b013e318168ec1f.
2
Adding protein to a carbohydrate supplement provided after endurance exercise enhances 4E-BP1 and RPS6 signaling in skeletal muscle.
J Appl Physiol (1985). 2008 Apr;104(4):1029-36. doi: 10.1152/japplphysiol.01173.2007. Epub 2008 Jan 31.
3
Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise.
Acta Physiol (Oxf). 2007 Sep;191(1):67-75. doi: 10.1111/j.1748-1716.2007.01712.x. Epub 2007 May 3.
4
Overexpression of GLUT5 in diabetic muscle is reversed by pioglitazone.
Diabetes Care. 2007 Apr;30(4):925-31. doi: 10.2337/dc06-1788. Epub 2007 Jan 24.
5
Interaction between the AMP-activated protein kinase and mTOR signaling pathways.
Med Sci Sports Exerc. 2006 Nov;38(11):1958-64. doi: 10.1249/01.mss.0000233796.16411.13.
6
mTOR signaling and the molecular adaptation to resistance exercise.
Med Sci Sports Exerc. 2006 Nov;38(11):1950-7. doi: 10.1249/01.mss.0000233797.24035.35.
7
Training for endurance and strength: lessons from cell signaling.
Med Sci Sports Exerc. 2006 Nov;38(11):1939-44. doi: 10.1249/01.mss.0000233799.62153.19.
8
Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle.
Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E1067-73. doi: 10.1152/ajpendo.00250.2006. Epub 2006 Jun 27.
9
Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise.
FASEB J. 2005 Sep;19(11):1498-500. doi: 10.1096/fj.04-3149fje. Epub 2005 Jun 28.
10
Regulation of muscle fiber type and running endurance by PPARdelta.
PLoS Biol. 2004 Oct;2(10):e294. doi: 10.1371/journal.pbio.0020294. Epub 2004 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验