Calahorro Fernando, Alejandre Encarna, Ruiz-Rubio Manuel
Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba.
J Vis Exp. 2009 Dec 11(34):1616. doi: 10.3791/1616.
Neurexins and neuroligins are cell adhesion molecules present in excitatory and inhibitory synapses, and they are required for correct neuron network function. These proteins are found at the presynaptic and postsynaptic membranes. Studies in mice indicate that neurexins and neurologins have an essential role in synaptic transmission. Recent reports have shown that altered neuronal connections during the development of the human nervous system could constitute the basis of the etiology of numerous cases of autism spectrum disorders. Caenorhabditis elegans could be used as an experimental tool to facilitate the study of the functioning of synaptic components, because of its simplicity for laboratory experimentation, and given that its nervous system and synaptic wiring has been fully characterized. In C. elegans nrx-1 and nlg-1 genes are orthologous to human NRXN1 and NLGN1 genes which encode alpha-neurexin-1 and neuroligin-1 proteins, respectively. In humans and nematodes, the organization of neurexins and neuroligins is similar in respect to functional domains. The head of the nematode contains the amphid, a sensory organ of the nematode, which mediates responses to different stimuli, including osmotic strength. The amphid is made of 12 sensory bipolar neurons with ciliated dendrites and one presynaptic terminal axon. Two of these neurons, named ASHR and ASHL are particularly important in osmotic sensory function, detecting water-soluble repellents with high osmotic strength. The dendrites of these two neurons lengthen to the tip of the mouth and the axons extend to the nerve ring, where they make synaptic connections with other neurons determining the behavioral response. To evaluate the implications of neurexin and neuroligin in high osmotic strength avoidance, we show the different response of C. elegans mutants defective in nrx-1 and nlg-1 genes, using a method based on a 4M fructose ring. The behavioral phenotypes were confirmed using specific RNAi clones. In C. elegans, the dsRNA required to trigger RNAi can be administered by feeding. The delivery of dsRNA through food induces the RNAi interference of the gene of interest thus allowing the identification of genetic components and network pathways.
神经连接蛋白和神经配体是存在于兴奋性和抑制性突触中的细胞粘附分子,它们是正确的神经网络功能所必需的。这些蛋白质存在于突触前膜和突触后膜。对小鼠的研究表明,神经连接蛋白和神经配体在突触传递中起重要作用。最近的报告显示,人类神经系统发育过程中神经元连接的改变可能构成许多自闭症谱系障碍病例病因的基础。秀丽隐杆线虫可作为一种实验工具,以促进对突触成分功能的研究,因为它便于实验室实验,且其神经系统和突触连接已得到充分表征。在秀丽隐杆线虫中,nrx-1和nlg-1基因分别与人的NRXN1和NLGN1基因直系同源,后者分别编码α-神经连接蛋白-1和神经配体-1蛋白。在人类和线虫中,神经连接蛋白和神经配体在功能域方面的组织方式相似。线虫的头部包含化感器,这是线虫的一种感觉器官,介导对不同刺激的反应,包括渗透压强度。化感器由12个具有纤毛状树突的感觉双极神经元和一个突触前终末轴突组成。其中两个神经元,名为ASHR和ASHL,在渗透压感觉功能中特别重要,它们检测具有高渗透压强度的水溶性驱避剂。这两个神经元的树突延伸到口的尖端,轴突延伸到神经环,在那里它们与其他神经元形成突触连接,从而决定行为反应。为了评估神经连接蛋白和神经配体在高渗透压强度回避中的作用,我们使用基于4M果糖环的方法,展示了nrx-1和nlg-1基因缺陷的秀丽隐杆线虫突变体的不同反应。使用特定的RNAi克隆证实了行为表型。在秀丽隐杆线虫中,触发RNAi所需的dsRNA可以通过喂食来施用。通过食物递送dsRNA会诱导对感兴趣基因的RNAi干扰,从而允许鉴定遗传成分和网络途径。