Suppr超能文献

一种用于磁共振脑图像的新型统计约束可变形配准框架。

A new statistically-constrained deformable registration framework for MR brain images.

作者信息

Xue Zhong, Shen Dinggang

机构信息

The Center for Biotechnology and Informatics, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, Houston, Texas, USA,

出版信息

Int J Med Eng Inform. 2009 Jan 1;1(3):357-367. doi: 10.1504/IJMEI.2009.022646.

Abstract

Statistical models of deformations (SMD) capture the variability of deformations from the template image onto a group of sample images and can be used to constrain the traditional deformable registration algorithms to improve their robustness and accuracy. This paper employs a wavelet-PCA-based SMD to constrain the traditional deformable registration based on the Bayesian framework. The template image is adaptively warped by an intermediate deformation field generated based on the SMD during the registration procedure, and the traditional deformable registration is performed to register the intermediate template image with the input subject image. Since the intermediate template image is much more similar to the subject image, and the deformation is relatively small and local, it is less likely to be stuck into undesired local minimum using the same deformable registration in this framework. Experiments show that the proposed statistically-constrained deformable registration framework is more robust and accurate than the conventional registration.

摘要

变形统计模型(SMD)捕捉从模板图像到一组样本图像的变形变异性,并可用于约束传统的可变形配准算法,以提高其鲁棒性和准确性。本文采用基于小波主成分分析的SMD来约束基于贝叶斯框架的传统可变形配准。在配准过程中,模板图像通过基于SMD生成的中间变形场进行自适应扭曲,然后执行传统的可变形配准,将中间模板图像与输入的目标图像进行配准。由于中间模板图像与目标图像更为相似,且变形相对较小且局部,因此在该框架中使用相同的可变形配准陷入不期望的局部最小值的可能性较小。实验表明,所提出的统计约束可变形配准框架比传统配准更鲁棒、更准确。

相似文献

1
A new statistically-constrained deformable registration framework for MR brain images.
Int J Med Eng Inform. 2009 Jan 1;1(3):357-367. doi: 10.1504/IJMEI.2009.022646.
2
Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping.
Med Image Anal. 2006 Oct;10(5):740-51. doi: 10.1016/j.media.2006.06.007. Epub 2006 Aug 2.
3
Learning-based Deformation Estimation for Fast Non-rigid Registration.
Proc Workshop Math Methods Biomed Image Analysis. 2008 Jun 23;JUNE(23-28):1-6. doi: 10.1109/CVPRW.2008.4563006.
4
Improved image registration by sparse patch-based deformation estimation.
Neuroimage. 2015 Jan 15;105:257-68. doi: 10.1016/j.neuroimage.2014.10.019. Epub 2014 Oct 16.
5
A generalized learning based framework for fast brain image registration.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
7
Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms.
Neuroimage. 2006 Nov 15;33(3):855-66. doi: 10.1016/j.neuroimage.2006.08.007. Epub 2006 Sep 25.
9
Learning-based deformable registration for infant MRI by integrating random forest with auto-context model.
Med Phys. 2017 Dec;44(12):6289-6303. doi: 10.1002/mp.12578. Epub 2017 Oct 19.
10
A general fast registration framework by learning deformation-appearance correlation.
IEEE Trans Image Process. 2012 Apr;21(4):1823-33. doi: 10.1109/TIP.2011.2170698. Epub 2011 Oct 6.

引用本文的文献

1
Telepointer technology in telemedicine: a review.
Biomed Eng Online. 2013 Mar 9;12:21. doi: 10.1186/1475-925X-12-21.

本文引用的文献

1
The role of image registration in brain mapping.
Image Vis Comput. 2001 Jan 1;19(1-2):3-24. doi: 10.1016/S0262-8856(00)00055-X.
2
Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images.
IEEE Trans Med Imaging. 1995;14(3):442-53. doi: 10.1109/42.414608.
3
4
Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms.
Neuroimage. 2006 Nov 15;33(3):855-66. doi: 10.1016/j.neuroimage.2006.08.007. Epub 2006 Sep 25.
5
Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping.
Med Image Anal. 2006 Oct;10(5):740-51. doi: 10.1016/j.media.2006.06.007. Epub 2006 Aug 2.
6
Estimating topology preserving and smooth displacement fields.
IEEE Trans Med Imaging. 2004 Jul;23(7):868-80. doi: 10.1109/TMI.2004.827963.
7
HAMMER: hierarchical attribute matching mechanism for elastic registration.
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39. doi: 10.1109/TMI.2002.803111.
8
Consistent landmark and intensity-based image registration.
IEEE Trans Med Imaging. 2002 May;21(5):450-61. doi: 10.1109/TMI.2002.1009381.
9
Nonrigid registration using free-form deformations: application to breast MR images.
IEEE Trans Med Imaging. 1999 Aug;18(8):712-21. doi: 10.1109/42.796284.
10
Statistical methods in computational anatomy.
Stat Methods Med Res. 1997 Sep;6(3):267-99. doi: 10.1177/096228029700600305.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验