Suppr超能文献

基于学习的快速非刚性配准变形估计

Learning-based Deformation Estimation for Fast Non-rigid Registration.

作者信息

Kim Min-Jeong, Kim Myoung-Hee, Shen Dinggang

机构信息

Department of Computer Science and Engineering, Ewha Womans University, Seoul 120750, Korea.

出版信息

Proc Workshop Math Methods Biomed Image Analysis. 2008 Jun 23;JUNE(23-28):1-6. doi: 10.1109/CVPRW.2008.4563006.

Abstract

This paper presents a learning-based deformation estimation method for fast non-rigid registration. First, a PCA-based statistical deformation model is constructed using the deformation fields obtained by conventional registration algorithms between a template image and training subject images. Then, the constructed statistical model is used to generate a large number of sample deformation fields by resampling in the PCA space. In the meanwhile, by warping the template using these sample deformation fields, the respective sample images in the PCA space can be also generated. Finally, after learning the correlation between the features of the sample images and their deformation coefficients, given a new test image, we can immediately estimate its relative deformations to the template based on its image information. Using this estimated deformation, we can warp the template to generate an intermediate template close to the test image. Since the intermediate template is more similar to the test image compared to the original template, the deformable registration via the intermediate template becomes much easier and faster. Experimental results show that the proposed learning-based registration method can fast register MR brain image with robust performance.

摘要

本文提出了一种基于学习的变形估计方法,用于快速非刚性配准。首先,使用模板图像与训练对象图像之间通过传统配准算法获得的变形场构建基于主成分分析(PCA)的统计变形模型。然后,利用构建的统计模型在PCA空间中通过重采样生成大量样本变形场。同时,通过使用这些样本变形场对模板进行扭曲,还可以生成PCA空间中的各个样本图像。最后,在学习了样本图像特征与其变形系数之间的相关性后,给定一幅新的测试图像,我们可以根据其图像信息立即估计其相对于模板的相对变形。利用这个估计的变形,我们可以对模板进行扭曲,生成一个接近测试图像的中间模板。由于中间模板与原始模板相比更类似于测试图像,因此通过中间模板进行的可变形配准变得更加容易和快速。实验结果表明,所提出的基于学习的配准方法能够快速地对磁共振脑图像进行配准,且性能稳健。

相似文献

1
Learning-based Deformation Estimation for Fast Non-rigid Registration.
Proc Workshop Math Methods Biomed Image Analysis. 2008 Jun 23;JUNE(23-28):1-6. doi: 10.1109/CVPRW.2008.4563006.
2
Improved image registration by sparse patch-based deformation estimation.
Neuroimage. 2015 Jan 15;105:257-68. doi: 10.1016/j.neuroimage.2014.10.019. Epub 2014 Oct 16.
3
RABBIT: rapid alignment of brains by building intermediate templates.
Neuroimage. 2009 Oct 1;47(4):1277-87. doi: 10.1016/j.neuroimage.2009.02.043. Epub 2009 Mar 10.
4
A new statistically-constrained deformable registration framework for MR brain images.
Int J Med Eng Inform. 2009 Jan 1;1(3):357-367. doi: 10.1504/IJMEI.2009.022646.
5
A generalized learning based framework for fast brain image registration.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14. doi: 10.1007/978-3-642-15745-5_38.
6
Sparse deformation prediction using Markove Decision Processes (MDP) for Non-rigid registration of MR image.
Comput Methods Programs Biomed. 2018 Aug;162:47-59. doi: 10.1016/j.cmpb.2018.04.024. Epub 2018 Apr 28.
7
A general fast registration framework by learning deformation-appearance correlation.
IEEE Trans Image Process. 2012 Apr;21(4):1823-33. doi: 10.1109/TIP.2011.2170698. Epub 2011 Oct 6.
9
Learning-based deformable registration for infant MRI by integrating random forest with auto-context model.
Med Phys. 2017 Dec;44(12):6289-6303. doi: 10.1002/mp.12578. Epub 2017 Oct 19.
10
Efficient Groupwise Registration for Brain MRI by Fast Initialization.
Mach Learn Med Imaging. 2017;10541:150-158. doi: 10.1007/978-3-319-67389-9_18. Epub 2017 Sep 7.

引用本文的文献

1
Low-Dimensional Non-Rigid Image Registration Using Statistical Deformation Models From Semi-Supervised Training Data.
IEEE Trans Med Imaging. 2015 Jul;34(7):1522-1532. doi: 10.1109/TMI.2015.2404572. Epub 2015 Feb 16.
2
FAST NONRIGID IMAGE REGISTRATION USING STATISTICAL DEFORMATION MODELS LEARNED FROM RICHLY-ANNOTATED DATA.
Proc IEEE Int Symp Biomed Imaging. 2013:580-583. doi: 10.1109/ISBI.2013.6556541.
3
Learning nonrigid deformations for constrained multi-modal image registration.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):171-8. doi: 10.1007/978-3-642-40760-4_22.
4
Voxel-Wise Displacement as Independent Features in Classification of Multiple Sclerosis.
Proc SPIE Int Soc Opt Eng. 2013 Mar 13;8669. doi: 10.1117/12.2007150.
5
Intermediate templates guided groupwise registration of diffusion tensor images.
Neuroimage. 2011 Jan 15;54(2):928-39. doi: 10.1016/j.neuroimage.2010.09.019. Epub 2010 Sep 17.

本文引用的文献

1
Shape regression machine.
Inf Process Med Imaging. 2007;20:13-25. doi: 10.1007/978-3-540-73273-0_2.
2
Learning-based deformable registration of MR brain images.
IEEE Trans Med Imaging. 2006 Sep;25(9):1145-57. doi: 10.1109/tmi.2006.879320.
3
Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration.
IEEE Trans Med Imaging. 2003 Aug;22(8):1014-25. doi: 10.1109/TMI.2003.815865.
4
A unified non-rigid feature registration method for brain mapping.
Med Image Anal. 2003 Jun;7(2):113-30. doi: 10.1016/s1361-8415(02)00102-0.
5
HAMMER: hierarchical attribute matching mechanism for elastic registration.
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39. doi: 10.1109/TMI.2002.803111.
7
Nonrigid registration using free-form deformations: application to breast MR images.
IEEE Trans Med Imaging. 1999 Aug;18(8):712-21. doi: 10.1109/42.796284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验