Kim Min-Jeong, Kim Myoung-Hee, Shen Dinggang
Department of Computer Science and Engineering, Ewha Womans University, Seoul 120750, Korea.
Proc Workshop Math Methods Biomed Image Analysis. 2008 Jun 23;JUNE(23-28):1-6. doi: 10.1109/CVPRW.2008.4563006.
This paper presents a learning-based deformation estimation method for fast non-rigid registration. First, a PCA-based statistical deformation model is constructed using the deformation fields obtained by conventional registration algorithms between a template image and training subject images. Then, the constructed statistical model is used to generate a large number of sample deformation fields by resampling in the PCA space. In the meanwhile, by warping the template using these sample deformation fields, the respective sample images in the PCA space can be also generated. Finally, after learning the correlation between the features of the sample images and their deformation coefficients, given a new test image, we can immediately estimate its relative deformations to the template based on its image information. Using this estimated deformation, we can warp the template to generate an intermediate template close to the test image. Since the intermediate template is more similar to the test image compared to the original template, the deformable registration via the intermediate template becomes much easier and faster. Experimental results show that the proposed learning-based registration method can fast register MR brain image with robust performance.
本文提出了一种基于学习的变形估计方法,用于快速非刚性配准。首先,使用模板图像与训练对象图像之间通过传统配准算法获得的变形场构建基于主成分分析(PCA)的统计变形模型。然后,利用构建的统计模型在PCA空间中通过重采样生成大量样本变形场。同时,通过使用这些样本变形场对模板进行扭曲,还可以生成PCA空间中的各个样本图像。最后,在学习了样本图像特征与其变形系数之间的相关性后,给定一幅新的测试图像,我们可以根据其图像信息立即估计其相对于模板的相对变形。利用这个估计的变形,我们可以对模板进行扭曲,生成一个接近测试图像的中间模板。由于中间模板与原始模板相比更类似于测试图像,因此通过中间模板进行的可变形配准变得更加容易和快速。实验结果表明,所提出的基于学习的配准方法能够快速地对磁共振脑图像进行配准,且性能稳健。