Department of Industrial Engineering & Management, National Chin-Yi University of Technology, 35, Lane 215, Section 1, Chung-Shan Road, Taiping City, Taichung County, 411, Taiwan.
Graefes Arch Clin Exp Ophthalmol. 2010 Mar;248(3):435-41. doi: 10.1007/s00417-009-1259-3. Epub 2009 Dec 15.
To determine whether linear discriminant analysis (LDA) and artificial neural network (ANN) can improve the differentiation between glaucomatous and normal eyes in a Taiwan Chinese population, based on the retinal nerve fiber layer thickness measurement data from scanning laser polarimetry-variable corneal compensation (GDx VCC).
This study comprised 79 glaucoma (visual field defect, mean deviation: -5.60 +/- 4.23 dB) and 86 healthy subjects (visual field defect, mean deviation: -1.44 +/- 1.72 dB). Each patient received complete ophthalmological evaluation, standard automated perimetry (SAP), and GDx VCC exam. One eye per subject was considered for further analysis. The area under the receiver operating characteristics (AROC) curve, sensitivity, specificity and the best cut-off value for each parameter were calculated. The diagnostic performance of artificial neural network (ANN) and linear discriminant analysis (LDA) for glaucoma detection using GDx VCC measurements will be compared in this study.
The individual parameter with the best AROC curve for differentiating between normal and glaucomatous eye was nerve fiber indicator (NFI, 0.932). The highest AROCs for the LDA and ANN methods were 0.950 and 0.970 respectively.
NFI, ANN and LDF method demonstrated equal diagnostic power in glaucoma detection in a Taiwan Chinese population.
为了确定线性判别分析(LDA)和人工神经网络(ANN)是否可以基于扫频激光偏振仪可变角膜补偿(GDx VCC)的视网膜神经纤维层厚度测量数据提高青光眼和正常眼之间的区分能力,对来自台湾的汉族人群进行研究。
本研究纳入了 79 名青光眼(视野缺损,平均偏差:-5.60 +/- 4.23dB)和 86 名健康受试者(视野缺损,平均偏差:-1.44 +/- 1.72dB)。每位患者均接受了完整的眼科评估、标准自动视野计(SAP)和 GDx VCC 检查。每位受试者的每只眼都被纳入进一步分析。计算了每个参数的接收者操作特征(ROC)曲线下面积(AUC)、敏感性、特异性和最佳截断值。本研究将比较 GDx VCC 测量值的人工神经网络(ANN)和线性判别分析(LDA)对青光眼检测的诊断性能。
用于区分正常眼和青光眼的最佳 AUC 曲线的个体参数为神经纤维指数(NFI,0.932)。LDA 和 ANN 方法的最高 AUC 分别为 0.950 和 0.970。
在台湾汉族人群中,NFI、ANN 和 LDF 方法在青光眼检测中具有相同的诊断能力。