Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
Chemistry. 2010 Jan 25;16(4):1356-64. doi: 10.1002/chem.200901673.
A polyoxometalate of the Keggin structure substituted with Ru(III), (6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)] in which (6)Q=(C(6)H(13))(4)N(+), catalyzed the photoreduction of CO(2) to CO with tertiary amines, preferentially Et(3)N, as reducing agents. A study of the coordination of CO(2) to (6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)] showed that 1) upon addition of CO(2) the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (g(x)=2.146, g(y)=2.100, and g(z)=1.935), and 3) the (13)C NMR spectrum had a broadened peak of bound CO(2) at 105.78 ppm (Delta(1/2)=122 Hz). It was concluded that CO(2) coordinates to the Ru(III) active site in both the presence and absence of Et(3)N to yield (6)Q(5)[Ru(III)(CO(2))SiW(11)O(39)]. Electrochemical measurements showed the reduction of Ru(III) to Ru(II) in (6)Q(5)[Ru(III)(CO(2))SiW(11)O(39)] at -0.31 V versus SCE, but no such reduction was observed for (6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)]. DFT-calculated geometries optimized at the M06/PC1//PBE/AUG-PC1//PBE/PC1-DF level of theory showed that CO(2) is preferably coordinated in a side-on manner to Ru(III) in the polyoxometalate through formation of a Ru-O bond, further stabilized by the interaction of the electrophilic carbon atom of CO(2) to an oxygen atom of the polyoxometalate. The end-on CO(2) bonding to Ru(III) is energetically less favorable but CO(2) is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp(2) hybridization state. Formation of a O(2)C-NMe(3) zwitterion, in turn, causes bending of CO(2) and enhances the carbon sp(2) hybridization. The synergetic effect of these two interactions stabilizes both Ru-O and C-N interactions and probably determines the promotional effect of an amine on the activation of CO(2) by Ru(III)(H(2)O)SiW(11)O(39). Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO(2) and Et(3)N. A mechanistic pathway for photoreduction of CO(2) is suggested based on the experimental and computed results.
具有 Keggin 结构的多金属氧酸盐取代了 Ru(III),(6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)],其中(6)Q=(C(6)H(13))(4)N(+),在三乙胺等叔胺作为还原剂的条件下,催化二氧化碳光还原为 CO。对(6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)]与 CO(2)配位的研究表明:1)当 CO(2)加入时,UV/Vis 光谱发生变化;2)在 EPR 光谱中得到了一个菱形信号(g(x)=2.146,g(y)=2.100,g(z)=1.935);3)(13)C NMR 光谱中 CO(2)的结合峰变宽,位于 105.78 ppm(Delta(1/2)=122 Hz)。这表明在存在和不存在三乙胺的情况下,CO(2)与 Ru(III)活性位点配位,生成(6)Q(5)[Ru(III)(CO(2))SiW(11)O(39)]。电化学测量表明,在-0.31 V 相对于 SCE 时,Ru(III)在(6)Q(5)[Ru(III)(CO(2))SiW(11)O(39)]中还原为 Ru(II),但在(6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)]中未观察到这种还原。基于 M06/PC1//PBE/AUG-PC1//PBE/PC1-DF 理论水平优化的 DFT 计算几何结构表明,CO(2)通过形成 Ru-O 键优选以侧接方式与多金属氧酸盐中的 Ru(III)配位,进一步通过 CO(2)的亲电碳原子与多金属氧酸盐的氧原子相互作用而稳定。末端 CO(2)与 Ru(III)的键合在能量上不太有利,但 CO(2)相当弯曲,从而有利于碳原子的亲核攻击,从而稳定碳 sp(2)杂化状态。形成 O(2)C-NMe(3)两性离子,反过来又会使 CO(2)弯曲,并增强碳 sp(2)杂化。这两种相互作用的协同效应稳定了 Ru-O 和 C-N 相互作用,可能决定了胺对Ru(III)(H(2)O)SiW(11)O(39)激活 CO(2)的促进作用。电子结构分析表明,多金属氧酸盐参与了 CO(2)和三乙胺的激活。根据实验和计算结果,提出了 CO(2)光还原的反应途径。