Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
J Am Chem Soc. 2010 Jan 20;132(2):567-75. doi: 10.1021/ja906367h.
Methyl-coenzyme M reductase (MCR) is the key enzyme in methane formation by methanogenic Archaea. It converts the thioether methyl-coenzyme M and the thiol coenzyme B into methane and the heterodisulfide of coenzyme M and coenzyme B. The catalytic mechanism of MCR and the role of its prosthetic group, the nickel hydrocorphin coenzyme F(430), is still disputed, and no intermediates have been observed so far by fast spectroscopic techniques when the enzyme was incubated with the natural substrates. In the presence of the competitive inhibitor coenzyme M instead of methyl-coenzyme M, addition of coenzyme B to the active Ni(I) state MCR(red1) induces two new species called MCR(red2a) and MCR(red2r) which have been characterized by pulse EPR spectroscopy. Here we show that the two MCR(red2) signals can also be induced by the S-methyl- and the S-trifluoromethyl analogs of coenzyme B. (19)F-ENDOR data for MCR(red2a) and MCR(red2r) induced by S-CF(3)-coenzyme B show that, upon binding of the coenzyme B analog, the end of the 7-thioheptanoyl chain of coenzyme B moves closer to the nickel center of F(430) by more than 2 A as compared to its position in both, the Ni(I) MCR(red1) form and the X-ray structure of the inactive Ni(II) MCR(ox1-silent) form. The finding that the protein is able to undergo a conformational change upon binding of the second substrate helps to explain the dramatic change in the coordination environment induced in the transition from MCR(red1) to MCR(red2) forms and opens the possibility that nickel coordination geometries other than square planar, tetragonal pyramidal, or elongated octahedral might occur in intermediates of the catalytic cycle.
甲基辅酶 M 还原酶(MCR)是产甲烷古菌形成甲烷的关键酶。它将硫醚甲基辅酶 M 和硫醇辅酶 B 转化为甲烷和辅酶 M 和辅酶 B 的杂二硫化物。MCR 的催化机制及其辅基镍氢化腐啉辅酶 F(430)的作用仍存在争议,迄今为止,当酶与天然底物孵育时,尚未通过快速光谱技术观察到中间体。在竞争性抑制剂辅酶 M 而不是甲基辅酶 M 的存在下,向活性 Ni(I)状态 MCR(red1)中添加辅酶 B 会诱导两种新的物质,称为 MCR(red2a)和 MCR(red2r),它们已通过脉冲 EPR 光谱进行了表征。在这里,我们表明两种 MCR(red2)信号也可以由辅酶 B 的 S-甲基和 S-三氟甲基类似物诱导。通过(19)F-ENDOR 数据对 MCR(red2a)和 MCR(red2r)的研究表明,与辅酶 B 的 Ni(I) MCR(red1)形式和失活的 Ni(II) MCR(ox1-silent)形式的 X 射线结构相比,当结合辅酶 B 类似物时,辅酶 B 的 7-硫庚酰链末端向 F(430)的镍中心移动超过 2 A。在结合第二个底物时,蛋白质能够发生构象变化的发现有助于解释从 MCR(red1)到 MCR(red2)形式的过渡中诱导的配位环境的巨大变化,并为催化循环的中间产物中可能出现除平面四方、四面金字塔或拉长八面体以外的镍配位几何形状提供了可能性。