Ramírez-Amador Fidel, Paul Sophia, Kumar Anuj, Lorent Christian, Keller Sebastian, Bohn Stefan, Nguyen Thinh, Lometto Stefano, Vlegels Dennis, Kahnt Jörg, Deobald Darja, Abendroth Frank, Vázquez Olalla, Hochberg Georg, Scheller Silvan, Stripp Sven T, Schuller Jan Michael
Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
Nature. 2025 Apr 16. doi: 10.1038/s41586-025-08890-7.
Methyl-coenzyme M reductase (MCR) is the enzyme responsible for nearly all biologically generated methane. Its active site comprises coenzyme F, a porphyrin-based cofactor with a central nickel ion that is active exclusively in the Ni(I) state. How methanogenic archaea perform the reductive activation of F represents a major gap in our understanding of one of the most ancient bioenergetic systems in nature. Here we purified and characterized the MCR activation complex from Methanococcus maripaludis. McrC, a small subunit encoded in the mcr operon, co-purifies with the methanogenic marker proteins Mmp7, Mmp17, Mmp3 and the A2 component. We demonstrated that this complex can activate MCR in vitro in a strictly ATP-dependent manner, enabling the formation of methane. In addition, we determined the cryo-electron microscopy structure of the MCR activation complex exhibiting different functional states with local resolutions reaching 1.8-2.1 Å. Our data revealed three complex iron-sulfur clusters that formed an electron transfer pathway towards F. Topology and electron paramagnetic resonance spectroscopy analyses indicate that these clusters are similar to the [8Fe-9S-C] cluster, a maturation intermediate of the catalytic cofactor in nitrogenase. Altogether, our findings offer insights into the activation mechanism of MCR and prospects on the early evolution of nitrogenase.
甲基辅酶M还原酶(MCR)是几乎所有生物产生甲烷所依赖的酶。其活性位点包含辅酶F,这是一种基于卟啉的辅因子,中心有一个镍离子,仅在Ni(I)状态下具有活性。产甲烷古菌如何对辅酶F进行还原激活,这在我们对自然界中最古老的生物能量系统之一的理解上存在重大空白。在此,我们从沼泽甲烷球菌中纯化并表征了MCR激活复合物。McrC是mcr操纵子中编码的一个小亚基,与产甲烷标记蛋白Mmp7、Mmp17、Mmp3和A2组分共同纯化。我们证明了该复合物能够在体外以严格依赖ATP的方式激活MCR,从而实现甲烷的形成。此外,我们确定了MCR激活复合物的冷冻电镜结构,其呈现出不同的功能状态,局部分辨率达到1.8 - 2.1 Å。我们的数据揭示了三个复杂的铁硫簇,它们形成了一条通向辅酶F的电子传递途径。拓扑结构和电子顺磁共振光谱分析表明,这些簇与[8Fe - 9S - C]簇相似,[8Fe - 9S - C]簇是固氮酶中催化辅因子的成熟中间体。总之,我们的研究结果为MCR的激活机制提供了见解,并为固氮酶的早期进化提供了前景。