Suppr超能文献

TargetSearch--一个 Bioconductor 软件包,用于高效预处理 GC-MS 代谢物轮廓数据。

TargetSearch--a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data.

机构信息

Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.

出版信息

BMC Bioinformatics. 2009 Dec 16;10:428. doi: 10.1186/1471-2105-10-428.

Abstract

BACKGROUND

Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks.

RESULTS

We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R.

CONCLUSIONS

TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data.

摘要

背景

代谢组学分析,即在一个实验中同时定量多种代谢物,正变得越来越流行,尤其是在系统生物学兴起之后。该领域的主要工具是气相色谱-质谱联用(GC-MS)。这项技术的高通量,再加上对大型实验的需求,导致了数据预处理,即跨样本定量代谢物,成为一个主要的瓶颈。现有的软件有几个局限性,包括限制最大样本量、系统误差和低灵活性。然而,最大的限制是,生成的数据通常需要大量的人工编辑,这是主观的,通常需要数天到数周的时间。

结果

我们引入了 TargetSearch 软件包,这是一个开源工具,它是一种灵活而准确的方法,可以在数小时内对大量的 GC-MS 样本进行预处理。我们开发了一种新的策略,通过迭代来校正和更新保留时间索引,以进行搜索和识别代谢物。该软件包是用 R 编程语言编写的,其计算密集型函数是用 C 语言编写的,以提高速度和性能。该软件包包括一个图形用户界面,以方便不熟悉 R 的用户使用。

结论

TargetSearch 允许对 GC-MS 实验进行快速准确的数据预处理,并克服了现有软件的样本数量限制和人工编辑要求。我们通过对一组已知的化学标准混合物和一个生物学实验进行分析来验证我们的方法。此外,我们还通过与其他 GC-MS 预处理工具进行比较,展示了它的功能和速度。我们相信,这个软件包将大大缓解当前的瓶颈,促进代谢组学数据的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20cd/3087348/96e90191cb21/1471-2105-10-428-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验