Suppr超能文献

非线性 GMA 系统中的通量对偶性:对代谢工程的启示。

Flux duality in nonlinear GMA systems: implications for metabolic engineering.

机构信息

Max Planck Institute of Biochemistry, Am Klopferspitz 82152 Martinsried, Germany.

出版信息

J Biotechnol. 2010 Sep 1;149(3):166-72. doi: 10.1016/j.jbiotec.2009.12.009. Epub 2009 Dec 14.

Abstract

Pathway models in biotechnology are customarily designed with metabolite concentrations as the primary, dependent variables, whereas fluxes are derived quantities that are secondarily computed from the primary variables. In other fields of mathematics, such as graph theory and linear systems analysis, it has proven useful to complement primal network model designs in terms of vertices (pools) and edges (processes) with dual designs, where the roles of the primary and secondary quantities are interchanged. The conversion from primal to dual systems is fairly easy in linear systems, but it is unclear to what degree it is possible in nonlinear systems. In this article, we present a method to transform nonlinear primal models of pathways or other biotechnological processes that conform to the Generalized Mass Action (GMA) structure within the formalism of Biochemical Systems Theory (BST) into dual models that focus on fluxes, rather than pools. Interestingly, this transformation is relatively straightforward, once some notational issues are streamlined, and the resulting dual system is again in the format of a GMA system. The transformation is illustrated with the example of glycolysis in Saccharomyces cerevisiae, a well known organism in the food industry. The results suggest how rewriting a model in terms of its fluxes helps bridge the gap between flux balance and dynamic models and also offers a view of the investigated system that is complementary to that of the original model. This dual view is important, because fluxes are sometimes more relevant for the behavior of a biotechnological system than (metabolite) pools. The dual system furthermore offers a systematic approach toward understanding the dynamical constraints under which the system operates.

摘要

生物技术中的途径模型通常将代谢物浓度设计为主要的、依赖的变量,而通量是从主要变量推导出来的派生量。在数学的其他领域,如图论和线性系统分析,已经证明在顶点(池)和边(过程)方面用对偶设计来补充原始网络模型设计是有用的,其中主要和次要数量的角色是互换的。在线性系统中,从原始系统到对偶系统的转换相当容易,但在非线性系统中,这种转换在多大程度上是可能的还不清楚。在本文中,我们提出了一种方法,可以将符合广义质量作用(GMA)结构的途径或其他生物技术过程的非线性原始模型转换为对偶模型,对偶模型关注通量,而不是池。有趣的是,一旦简化了一些符号问题,这种转换相对简单,并且得到的对偶系统再次采用 GMA 系统的格式。该转换通过酿酒酵母糖酵解的例子来说明,酿酒酵母是食品工业中一种众所周知的生物。结果表明,根据通量重写模型如何有助于弥合通量平衡和动态模型之间的差距,并提供了一种与原始模型互补的研究系统的观点。这种对偶观点很重要,因为通量有时比(代谢物)池更能反映生物技术系统的行为。对偶系统还提供了一种系统的方法来理解系统运行的动态约束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验