School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
Calcif Tissue Int. 2010 Feb;86(2):91-103. doi: 10.1007/s00223-009-9326-7. Epub 2009 Dec 17.
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
在成釉过程中,细胞外基质蛋白与生长的羟基磷灰石晶体相互作用,形成了最具建筑复杂结构的生物组织之一。釉质形成的过程是一个独特的生物矿化系统,其特征首先是在成釉分泌阶段晶体长增加,随后在后期成熟阶段晶体长、宽和厚度大大增加,此时有机复合物被酶去除。晶体生长受釉质微环境 pH 值变化的调节,这对釉质的生物矿化至关重要。虽然大多数异常釉质表型(釉质不全)的遗传基础通常与釉质基质特定基因的突变有关,但参与 pH 调节的基因的突变可能导致釉质结构严重受损,突出了 pH 调节对正常釉质发育的重要性。本文综述了成釉细胞(成釉细胞)用来维持 pH 平衡的细胞内和细胞外机制,并讨论了与参与 pH 调节的基因紊乱相关的釉质表型。