Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA, 90033, USA.
Department of Orthodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
Calcif Tissue Int. 2017 Nov;101(5):457-464. doi: 10.1007/s00223-017-0311-2. Epub 2017 Aug 9.
Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.
成釉(牙齿釉质形成)是一个生物矿化过程,主要包括两个阶段(分泌阶段和成熟阶段),具有独特的特征。在分泌阶段,釉质器官的内上皮(即成釉细胞)将釉质基质蛋白(EMPs)合成并分泌到釉质空间中。富含蛋白质的釉质基质在 pH 值中性的微环境中形成高度有序的结构。随着成釉向成熟阶段的转变,EMP 通过内体溶酶体途径被成釉细胞降解和内化。釉质晶体的形成早在分泌阶段就开始了,然而,在成熟阶段,钙和磷酸盐更快地沉积到釉质空间中,导致晶体长度和矿物质体积迅速扩大。在成熟阶段的成釉过程中,釉质的 pH 值从略高于中性到酸性变化很大。釉质成熟过程中外周酸碱平衡由成釉细胞介导的调节网络紧密控制,其中包括来自釉质乳头层细胞和成釉细胞的碳酸氢根离子的大量合成和移动。在这篇综述中,我们总结了参与成熟阶段成釉 pH 调节的碳酸酐酶和碳酸转运体/交换体。已经证明在这个过程中起重要作用的蛋白质包括 CA2、CA6、CFTR、AE2、NBCe1、SLC26A1/SAT1、SLC26A3/DRA、SLC26A4/PDS、SLC26A6/PAT1 和 SLC26A7/SUT2。此外,我们还讨论了 miRNA 调节与牙釉质形成中碳酸氢盐转运的关系。