Suppr超能文献

基因组排除能垒的核小体定位。

Nucleosome positioning by genomic excluding-energy barriers.

机构信息

Universitè Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22257-62. doi: 10.1073/pnas.0909511106. Epub 2009 Dec 14.

Abstract

Recent genome-wide nucleosome mappings along with bioinformatics studies have confirmed that the DNA sequence plays a more important role in the collective organization of nucleosomes in vivo than previously thought. Yet in living cells, this organization also results from the action of various external factors like DNA-binding proteins and chromatin remodelers. To decipher the code for intrinsic chromatin organization, there is thus a need for in vitro experiments to bridge the gap between computational models of nucleosome sequence preferences and in vivo nucleosome occupancy data. Here we combine atomic force microscopy in liquid and theoretical modeling to demonstrate that a major sequence signaling in vivo are high-energy barriers that locally inhibit nucleosome formation rather than favorable positioning motifs. We show that these genomic excluding-energy barriers condition the collective assembly of neighboring nucleosomes consistently with equilibrium statistical ordering principles. The analysis of two gene promoter regions in Saccharomyces cerevisiae and the human genome indicates that these genomic barriers direct the intrinsic nucleosome occupancy of regulatory sites, thereby contributing to gene expression regulation.

摘要

最近的全基因组核小体作图以及生物信息学研究证实,与之前的观点相比,DNA 序列在体内核小体的集体组织中起着更为重要的作用。然而,在活细胞中,这种组织还源于各种外部因素的作用,如 DNA 结合蛋白和染色质重塑因子。为了解析内在染色质组织的密码,因此需要进行体外实验来弥合核小体序列偏好的计算模型与体内核小体占有率数据之间的差距。在这里,我们结合液相结合原子力显微镜和理论建模,证明了体内主要的序列信号是高能势垒,这些势垒局部抑制核小体的形成,而不是有利的定位模体。我们表明,这些基因组排除能垒条件一致地与平衡统计排序原则一致,从而使相邻核小体的集体组装。对酿酒酵母和人类基因组中两个基因启动子区域的分析表明,这些基因组障碍指导调控位点的固有核小体占有率,从而有助于基因表达调控。

相似文献

1
Nucleosome positioning by genomic excluding-energy barriers.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22257-62. doi: 10.1073/pnas.0909511106. Epub 2009 Dec 14.
2
Experiments confirm the influence of genome long-range correlations on nucleosome positioning.
Phys Rev Lett. 2007 Nov 23;99(21):218103. doi: 10.1103/PhysRevLett.99.218103. Epub 2007 Nov 21.
3
A genomic code for nucleosome positioning.
Nature. 2006 Aug 17;442(7104):772-8. doi: 10.1038/nature04979. Epub 2006 Jul 19.
4
Re-cracking the nucleosome positioning code.
Stat Appl Genet Mol Biol. 2008;7(1):Article14. doi: 10.2202/1544-6115.1367. Epub 2008 Apr 21.
5
Nucleosome positioning and nucleosome stacking: two faces of the same coin.
Mol Biosyst. 2012 Apr;8(4):1172-8. doi: 10.1039/c2mb05407h. Epub 2012 Jan 23.
6
Nucleosome positioning in a model of active chromatin remodeling enzymes.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7799-803. doi: 10.1073/pnas.1015206108. Epub 2011 Apr 25.
7
8
Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
J Phys Condens Matter. 2015 Feb 18;27(6):064102. doi: 10.1088/0953-8984/27/6/064102. Epub 2015 Jan 7.
9
Genome-scale identification of nucleosome positions in S. cerevisiae.
Science. 2005 Jul 22;309(5734):626-30. doi: 10.1126/science.1112178. Epub 2005 Jun 16.

引用本文的文献

1
Consecutive low-frequency shifts in A/T content denote nucleosome positions across microeukaryotes.
iScience. 2025 Apr 18;28(5):112472. doi: 10.1016/j.isci.2025.112472. eCollection 2025 May 16.
2
Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution.
Genes (Basel). 2021 Jun 1;12(6):851. doi: 10.3390/genes12060851.
3
Effects of size, cooperativity, and competitive binding on protein positioning on DNA.
Biophys J. 2021 May 18;120(10):2040-2053. doi: 10.1016/j.bpj.2021.03.016. Epub 2021 Mar 23.
4
The implication of DNA bending energy for nucleosome positioning and sliding.
Sci Rep. 2018 Jun 11;8(1):8853. doi: 10.1038/s41598-018-27247-x.
6
Evidence for DNA Sequence Encoding of an Accessible Nucleosomal Array across Vertebrates.
Biophys J. 2018 May 22;114(10):2308-2316. doi: 10.1016/j.bpj.2018.02.025. Epub 2018 Mar 24.
7
Evidence of selection for an accessible nucleosomal array in human.
BMC Genomics. 2016 Jul 29;17:526. doi: 10.1186/s12864-016-2880-2.
8
9
Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.
Nucleic Acids Res. 2016 Feb 29;44(4):1630-41. doi: 10.1093/nar/gkv1153. Epub 2015 Nov 8.
10
Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.
Nucleic Acids Res. 2016 Feb 18;44(3):1036-51. doi: 10.1093/nar/gkv978. Epub 2015 Oct 1.

本文引用的文献

1
Dynamics of nucleosomes revealed by time-lapse atomic force microscopy.
Biochemistry. 2009 Aug 25;48(33):7842-8. doi: 10.1021/bi900977t.
2
The DNA-encoded nucleosome organization of a eukaryotic genome.
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
3
Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.
PLoS Comput Biol. 2008 Nov;4(11):e1000216. doi: 10.1371/journal.pcbi.1000216. Epub 2008 Nov 7.
4
A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.
Genome Res. 2008 Jul;18(7):1073-83. doi: 10.1101/gr.078261.108. Epub 2008 Jun 12.
5
DNA physical properties determine nucleosome occupancy from yeast to fly.
Nucleic Acids Res. 2008 Jun;36(11):3746-56. doi: 10.1093/nar/gkn262. Epub 2008 May 17.
6
Two strategies for gene regulation by promoter nucleosomes.
Genome Res. 2008 Jul;18(7):1084-91. doi: 10.1101/gr.076059.108. Epub 2008 Apr 30.
8
Dynamic regulation of nucleosome positioning in the human genome.
Cell. 2008 Mar 7;132(5):887-98. doi: 10.1016/j.cell.2008.02.022.
9
Experiments confirm the influence of genome long-range correlations on nucleosome positioning.
Phys Rev Lett. 2007 Nov 23;99(21):218103. doi: 10.1103/PhysRevLett.99.218103. Epub 2007 Nov 21.
10
Genomic sequence is highly predictive of local nucleosome depletion.
PLoS Comput Biol. 2008 Jan;4(1):e13. doi: 10.1371/journal.pcbi.0040013. Epub 2007 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验