Suppr超能文献

核小体在活性染色质重塑酶模型中的定位。

Nucleosome positioning in a model of active chromatin remodeling enzymes.

机构信息

Department of Biosciences and Bioengineering and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.

出版信息

Proc Natl Acad Sci U S A. 2011 May 10;108(19):7799-803. doi: 10.1073/pnas.1015206108. Epub 2011 Apr 25.

Abstract

Accounting for enzyme-mediated active sliding, disassembly, and sequence-dependent positioning of nucleosomes, we simulate nucleosome occupancy over cell-cycle-scale times using a stochastic kinetic model. We show that ATP-dependent active nucleosome sliding and nucleosome removal processes are essential to obtain in vivo-like nucleosome positioning. While active sliding leads to dense nucleosome filling, sliding events alone cannot ensure sequence-dependent nucleosome positioning: Active nucleosome removal is the crucial remodeling event that drives positioning. We also show that remodeling activity changes nucleosome dynamics from glassy to liquid-like, and that remodeling dramatically influences exposure dynamics of promoter regions.

摘要

考虑到酶介导的活性滑动、解组装以及核小体的序列依赖性定位,我们使用随机动力学模型模拟了细胞周期尺度上的核小体占有率。结果表明,ATP 依赖性的活性核小体滑动和核小体去除过程对于获得类似于体内的核小体定位是必不可少的。虽然活性滑动导致核小体紧密填充,但单独的滑动事件并不能确保序列依赖性的核小体定位:活性核小体去除是驱动定位的关键重塑事件。我们还表明,重塑活性使核小体动力学从玻璃态转变为液态样,并且重塑极大地影响了启动子区域的暴露动力学。

相似文献

1
Nucleosome positioning in a model of active chromatin remodeling enzymes.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7799-803. doi: 10.1073/pnas.1015206108. Epub 2011 Apr 25.
2
The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes.
J Biol Chem. 2013 Aug 9;288(32):23182-93. doi: 10.1074/jbc.M113.471979. Epub 2013 Jun 18.
3
A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression.
Mol Cell Biol. 2009 Jun;29(12):3255-65. doi: 10.1128/MCB.01741-08. Epub 2009 Apr 6.
4
Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2.
Mol Cell Biol. 2004 Nov;24(22):10047-57. doi: 10.1128/MCB.24.22.10047-10057.2004.
5
In vivo role for the chromatin-remodeling enzyme SWI/SNF in the removal of promoter nucleosomes by disassembly rather than sliding.
J Biol Chem. 2011 Nov 25;286(47):40556-65. doi: 10.1074/jbc.M111.289918. Epub 2011 Oct 6.
6
In vitro reconstitution of in vivo-like nucleosome positioning on yeast DNA.
Methods Mol Biol. 2012;833:271-87. doi: 10.1007/978-1-61779-477-3_17.
7
Removal of promoter nucleosomes by disassembly rather than sliding in vivo.
Mol Cell. 2004 Jun 4;14(5):667-73. doi: 10.1016/j.molcel.2004.05.013.
8
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.
Science. 2011 Sep 23;333(6050):1758-60. doi: 10.1126/science.1206097.
10
Effective dynamics of nucleosome configurations at the yeast promoter.
Elife. 2021 Mar 5;10:e58394. doi: 10.7554/eLife.58394.

引用本文的文献

1
Chromatin remodelers: a concise introduction for biophysicists.
Biophys Rev. 2024 Jun 6;16(3):357-363. doi: 10.1007/s12551-024-01199-1. eCollection 2024 Jun.
2
Modeling of covalent modifications of histones to estimate the binding affinity.
Chromosoma. 2023 Nov;132(4):247-256. doi: 10.1007/s00412-023-00798-3. Epub 2023 May 20.
3
Nucleosome Assembly and Disassembly Are Governed by Chemical Kinetic Principles.
Front Cell Dev Biol. 2021 Oct 7;9:762571. doi: 10.3389/fcell.2021.762571. eCollection 2021.
4
On the role of transcription in positioning nucleosomes.
PLoS Comput Biol. 2021 Jan 8;17(1):e1008556. doi: 10.1371/journal.pcbi.1008556. eCollection 2021 Jan.
6
Metabolism, Epigenetics, and Causal Inference in Heart Failure.
Trends Endocrinol Metab. 2020 Mar;31(3):181-191. doi: 10.1016/j.tem.2019.11.009. Epub 2019 Dec 19.
7
Theory of Active Chromatin Remodeling.
Phys Rev Lett. 2019 Nov 15;123(20):208102. doi: 10.1103/PhysRevLett.123.208102.
8
ChIPulate: A comprehensive ChIP-seq simulation pipeline.
PLoS Comput Biol. 2019 Mar 21;15(3):e1006921. doi: 10.1371/journal.pcbi.1006921. eCollection 2019 Mar.
10
Major Determinants of Nucleosome Positioning.
Biophys J. 2018 May 22;114(10):2279-2289. doi: 10.1016/j.bpj.2018.03.015. Epub 2018 Apr 6.

本文引用的文献

1
Structural constraints revealed in consistent nucleosome positions in the genome of S. cerevisiae.
Epigenetics Chromatin. 2010 Nov 12;3(1):20. doi: 10.1186/1756-8935-3-20.
3
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes.
Nature. 2009 Dec 24;462(7276):1016-21. doi: 10.1038/nature08621.
4
Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?
Nucleic Acids Res. 2010 Jan;38(3):709-19. doi: 10.1093/nar/gkp1043. Epub 2009 Nov 24.
5
Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities.
Nucleic Acids Res. 2009 Sep;37(17):5641-55. doi: 10.1093/nar/gkp610. Epub 2009 Jul 22.
6
Nucleosome positioning and gene regulation: advances through genomics.
Nat Rev Genet. 2009 Mar;10(3):161-72. doi: 10.1038/nrg2522.
7
The DNA-encoded nucleosome organization of a eukaryotic genome.
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
8
Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae.
PLoS Comput Biol. 2008 Sep 12;4(9):e1000175. doi: 10.1371/journal.pcbi.1000175.
9
A high-resolution atlas of nucleosome occupancy in yeast.
Nat Genet. 2007 Oct;39(10):1235-44. doi: 10.1038/ng2117. Epub 2007 Sep 16.
10
Nucleosome hopping and sliding kinetics determined from dynamics of single chromatin fibers in Xenopus egg extracts.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13649-54. doi: 10.1073/pnas.0701459104. Epub 2007 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验