Suppr超能文献

由核小体动力学调控的DNA上蛋白质结合位点暴露时间尺度的理论估计。

Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

作者信息

Parmar Jyotsana J, Das Dibyendu, Padinhateeri Ranjith

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India

出版信息

Nucleic Acids Res. 2016 Feb 29;44(4):1630-41. doi: 10.1093/nar/gkv1153. Epub 2015 Nov 8.

Abstract

It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails.

摘要

人们越来越认识到,DNA上的核小体组织对DNA-蛋白质相互作用以及由此产生的基因表达起着至关重要的调节作用。虽然已经对DNA上核小体定位的空间特征进行了广泛的实验和理论研究,但对其时间特征却知之甚少。考虑到ATP酶活性和DNA序列对核小体动力学的影响,我们开发了一种理论方法来估计非组蛋白(如转录因子和TATA结合蛋白)结合位点在任何基因组上的连续暴露时间。将该方法应用于酿酒酵母,我们发现暴露时间尺度由多个核小体的协同动力学决定,其行为往往与基于静态核小体占有率的预期不同。通过研究GAL1和PHO5启动子中的暴露时间,我们表明我们的理论预测与已知实验一致。我们在全基因组范围内应用我们的方法,发现TATA框和与转录起始位点相邻的区域(+1核小体区域)的平均暴露时间在基因间存在巨大差异;由此产生的时间尺度分布具有非指数尾部。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b96/4770213/145d858783b3/gkv1153fig1.jpg

相似文献

1
Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.
Nucleic Acids Res. 2016 Feb 29;44(4):1630-41. doi: 10.1093/nar/gkv1153. Epub 2015 Nov 8.
2
In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
PLoS Genet. 2012;8(6):e1002771. doi: 10.1371/journal.pgen.1002771. Epub 2012 Jun 21.
3
The effect of an intervening promoter nucleosome on gene expression.
PLoS One. 2013 May 20;8(5):e63072. doi: 10.1371/journal.pone.0063072. Print 2013.
5
A highly conserved region within H2B is important for FACT to act on nucleosomes.
Mol Cell Biol. 2014 Feb;34(3):303-14. doi: 10.1128/MCB.00478-13. Epub 2013 Nov 18.
6
Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2.
Mol Cell Biol. 2004 Nov;24(22):10047-57. doi: 10.1128/MCB.24.22.10047-10057.2004.
8
Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler.
Genome Res. 2016 May;26(5):693-704. doi: 10.1101/gr.199919.115. Epub 2016 Mar 18.
10
ISWI and CHD chromatin remodelers bind promoters but act in gene bodies.
PLoS Genet. 2013;9(2):e1003317. doi: 10.1371/journal.pgen.1003317. Epub 2013 Feb 28.

引用本文的文献

1
Bubble Relaxation Dynamics in Homopolymer DNA Sequences.
Molecules. 2023 Jan 20;28(3):1041. doi: 10.3390/molecules28031041.
2
Computational analysis of GAL pathway pinpoints mechanisms underlying natural variation.
PLoS Comput Biol. 2021 Sep 27;17(9):e1008691. doi: 10.1371/journal.pcbi.1008691. eCollection 2021 Sep.
4
The Accidental Ally: Nucleosome Barriers Can Accelerate Cohesin-Mediated Loop Formation in Chromatin.
Biophys J. 2020 Dec 1;119(11):2316-2325. doi: 10.1016/j.bpj.2020.10.014. Epub 2020 Nov 10.
5
A unified computational framework for modeling genome-wide nucleosome landscape.
Phys Biol. 2018 Sep 12;15(6):066011. doi: 10.1088/1478-3975/aadad2.
6
Theory of Site-Specific DNA-Protein Interactions in the Presence of Nucleosome Roadblocks.
Biophys J. 2018 Jun 5;114(11):2516-2529. doi: 10.1016/j.bpj.2018.04.039.
8
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2018 Feb 7;82(1). doi: 10.1128/MMBR.00040-17. Print 2018 Jun.

本文引用的文献

1
A positioned +1 nucleosome enhances promoter-proximal pausing.
Nucleic Acids Res. 2015 Mar 31;43(6):3068-78. doi: 10.1093/nar/gkv149. Epub 2015 Mar 3.
2
Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions.
Genes Dev. 2014 Nov 15;28(22):2492-7. doi: 10.1101/gad.250704.114.
3
Protein-DNA binding in the absence of specific base-pair recognition.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17140-5. doi: 10.1073/pnas.1410569111. Epub 2014 Oct 13.
4
Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):E2462-71. doi: 10.1073/pnas.1400517111. Epub 2014 Jun 2.
5
The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding.
Nucleic Acids Res. 2014 Jul;42(12):7561-76. doi: 10.1093/nar/gku423. Epub 2014 May 14.
6
Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase.
Mol Cell. 2014 Mar 6;53(5):819-30. doi: 10.1016/j.molcel.2014.02.014.
8
Nucleosomes accelerate transcription factor dissociation.
Nucleic Acids Res. 2014 Mar;42(5):3017-27. doi: 10.1093/nar/gkt1319. Epub 2013 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验