Suppr超能文献

羽毛轴选择性角蛋白基质的生物降解揭示了经典的生物工程学。

Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.

机构信息

Biological and Conservation Sciences, , P. Bag X54001, Durban 4000, South Africa.

出版信息

Proc Biol Sci. 2010 Apr 22;277(1685):1161-8. doi: 10.1098/rspb.2009.1980. Epub 2009 Dec 16.

Abstract

Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown-study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately 6 microm thick, extending predominantly axially but with a small outer circumferential component. Near-periodic thickened nodes of the fibres are staggered with those in adjacent fibres in two- and three-dimensional planes, creating a fibre-matrix texture with high attributes for crack stopping and resistance to transverse cutting. Close association of the fibre layer with the underlying 'spongy' medulloid pith indicates the potential for higher buckling loads and greater elastic recoil. Strikingly, the fibres are similar in dimensions and form to the free filaments of the feather vane and plumulaceous and embryonic down, the syncitial barbules, but, identified for the first time in 140+ years of study in a new location-as a major structural component of the rachis. Early in feather evolution, syncitial barbules were consolidated in a robust central rachis, definitively characterizing the avian lineage of keratin.

摘要

飞行需要羽毛羽轴极其坚韧和轻盈。然而,羽轴关键丝状结构层次尚不清楚——由于细丝和基质之间的紧密化学键,研究受到阻碍。我们使用新颖的微生物生物降解原位描绘羽轴皮质的纤维。它揭示了迄今已知最厚的角蛋白细丝(大于 10 倍),大约 6 微米厚,主要轴向延伸,但有一个小的外圆周成分。纤维的近周期性增厚节点在二维和三维平面上与相邻纤维错开,形成具有高抗裂和抗横向切割性能的纤维-基质纹理。纤维层与下方“海绵状”髓质髓心的紧密结合表明具有更高的屈曲载荷和更大的弹性回弹潜力。引人注目的是,纤维在尺寸和形态上与羽毛羽片和羽毛状及胚胎绒羽的自由细丝、联体羽小枝相似,但在 140 多年的研究中首次在一个新的位置被确定为羽轴的主要结构成分。在羽毛进化的早期,联体羽小枝在坚固的中心羽轴中得到巩固,明确地描述了角蛋白的鸟类谱系。

相似文献

1
Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.
Proc Biol Sci. 2010 Apr 22;277(1685):1161-8. doi: 10.1098/rspb.2009.1980. Epub 2009 Dec 16.
2
Microstructural tissue-engineering in the rachis and barbs of bird feathers.
Sci Rep. 2017 Mar 27;7:45162. doi: 10.1038/srep45162.
4
A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications.
PLoS One. 2013 Jun 10;8(6):e65849. doi: 10.1371/journal.pone.0065849. Print 2013.
5
A lightweight, biological structure with tailored stiffness: The feather vane.
Acta Biomater. 2016 Sep 1;41:27-39. doi: 10.1016/j.actbio.2016.05.022. Epub 2016 May 13.
8
Ultrastructure of the feather follicle in relation to the formation of the rachis in pennaceous feathers.
Anat Sci Int. 2010 Jun;85(2):79-91. doi: 10.1007/s12565-009-0060-z. Epub 2009 Aug 29.
9
Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
Prog Histochem Cytochem. 2008;43(1):1-69. doi: 10.1016/j.proghi.2008.01.001. Epub 2008 Mar 14.

引用本文的文献

1
The feather's multi-functional structure across nano to macro scales inspires hierarchical design.
J R Soc Interface. 2025 Apr;22(225):20240776. doi: 10.1098/rsif.2024.0776. Epub 2025 Apr 23.
2
Nature's Load-Bearing Design Principles and Their Application in Engineering: A Review.
Biomimetics (Basel). 2024 Sep 9;9(9):545. doi: 10.3390/biomimetics9090545.
3
Modification of Keratin Integrations and the Associated Morphogenesis in Frizzling Chicken Feathers.
Biology (Basel). 2024 Jun 23;13(7):464. doi: 10.3390/biology13070464.
4
Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review.
Biomimetics (Basel). 2023 Apr 12;8(2):153. doi: 10.3390/biomimetics8020153.
5
Analysis and comparison of protein secondary structures in the rachis of avian flight feathers.
PeerJ. 2022 Feb 28;10:e12919. doi: 10.7717/peerj.12919. eCollection 2022.
6
Fragmentation of Beaded Fibres in a Composite.
Materials (Basel). 2022 Jan 24;15(3):890. doi: 10.3390/ma15030890.
7
The damping properties of the foam-filled shaft of primary feathers of the pigeon Columba livia.
Naturwissenschaften. 2021 Dec 3;109(1):1. doi: 10.1007/s00114-021-01773-7.
8
Structure of Keratin.
Methods Mol Biol. 2021;2347:41-53. doi: 10.1007/978-1-0716-1574-4_5.
9
Detection of endogenous lipids in chicken feathers distinct from preen gland constituents.
Protoplasma. 2020 Nov;257(6):1709-1724. doi: 10.1007/s00709-020-01544-7. Epub 2020 Aug 26.
10
Relating form to function in the hummingbird feeding apparatus.
PeerJ. 2017 Jun 8;5:e3449. doi: 10.7717/peerj.3449. eCollection 2017.

本文引用的文献

1
Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia.
J Anat. 2009 Apr;214(4):516-59. doi: 10.1111/j.1469-7580.2009.01066.x.
2
Towards a comprehensive model of feather regeneration.
J Morphol. 2009 Oct;270(10):1166-208. doi: 10.1002/jmor.10747.
3
A new feather type in a nonavian theropod and the early evolution of feathers.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):832-4. doi: 10.1073/pnas.0810055106. Epub 2009 Jan 12.
4
Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18419-23. doi: 10.1073/pnas.0805154105. Epub 2008 Nov 10.
5
Molecular packing in the feather keratin filament.
J Struct Biol. 2008 Apr;162(1):1-13. doi: 10.1016/j.jsb.2008.01.011. Epub 2008 Feb 2.
6
New feather-degrading filamentous fungi.
Microb Ecol. 2008 Jul;56(1):13-7. doi: 10.1007/s00248-007-9319-x. Epub 2007 Sep 25.
9
Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium.
Fungal Genet Biol. 2007 Feb;44(2):77-87. doi: 10.1016/j.fgb.2006.07.007. Epub 2006 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验