Suppr超能文献

KCNA5 四聚体结构域突变影响通道动力学并导致异常的运输模式。

Tetramerization domain mutations in KCNA5 affect channel kinetics and cause abnormal trafficking patterns.

机构信息

Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., MC 0725, La Jolla, CA 92093-0725, USA.

出版信息

Am J Physiol Cell Physiol. 2010 Mar;298(3):C496-509. doi: 10.1152/ajpcell.00464.2009. Epub 2009 Dec 16.

Abstract

The activity of voltage-gated K(+) (K(V)) channels plays an important role in regulating pulmonary artery smooth muscle cell (PASMC) contraction, proliferation, and apoptosis. The highly conserved NH(2)-terminal tetramerization domain (T1) of K(V) channels is important for proper channel assembly, association with regulatory K(V) beta-subunits, and localization of the channel to the plasma membrane. We recently reported two nonsynonymous mutations (G182R and E211D) in the KCNA5 gene of patients with idiopathic pulmonary arterial hypertension, which localize to the T1 domain of KCNA5. To study the electrophysiological properties and expression patterns of the mutants compared with the wild-type (WT) channel in vitro, we transfected HEK-293 cells with WT KCNA5, G182R, E211D, or the double mutant G182R/E211D channel. The mutants form functional channels; however, whole cell current kinetic differences between WT and mutant channels exist. Steady-state inactivation curves of the G182R and G182R/E211D channels reveal accelerated inactivation; the mutant channels inactivated at more hyperpolarized potentials compared with the WT channel. Channel protein expression was also decreased by the mutations. Compared with the WT channel, which was present in its mature glycosylated form, the mutant channels are present in greater proportion in their immature form in HEK-293 cells. Furthermore, G182R protein level is greatly reduced in COS-1 cells compared with WT. Immunostaining data support the hypothesis that, while WT protein localizes to the plasma membrane, mutant protein is mainly retained in intracellular packets. Overall, these data support a role for the T1 domain in channel kinetics as well as in KCNA5 channel subcellular localization.

摘要

电压门控钾 (K(V)) 通道的活性在调节肺动脉平滑肌细胞 (PASMC) 收缩、增殖和凋亡方面起着重要作用。K(V) 通道高度保守的 NH 2 -末端四聚化结构域 (T1) 对于正确的通道组装、与调节性 K(V)β亚基的结合以及通道在质膜上的定位是重要的。我们最近报道了特发性肺动脉高压患者 KCNA5 基因中的两个非同义突变 (G182R 和 E211D),它们定位于 KCNA5 的 T1 结构域。为了研究突变体与野生型 (WT) 通道在体外的电生理特性和表达模式,我们用 WT KCNA5、G182R、E211D 或双突变体 G182R/E211D 转染 HEK-293 细胞。这些突变体形成功能性通道;然而,WT 和突变通道之间存在全细胞电流动力学差异。G182R 和 G182R/E211D 通道的稳态失活曲线显示出失活加速;与 WT 通道相比,突变通道在更超极化的电位下失活。突变还降低了通道蛋白的表达。与存在于成熟糖基化形式的 WT 通道相比,突变通道以其未成熟形式存在的比例更大。此外,与 WT 相比,COS-1 细胞中的 G182R 蛋白水平大大降低。免疫染色数据支持这样的假设,即尽管 WT 蛋白定位于质膜,但突变蛋白主要保留在细胞内的包囊中。总的来说,这些数据支持 T1 结构域在通道动力学以及 KCNA5 通道亚细胞定位中的作用。

相似文献

1
Tetramerization domain mutations in KCNA5 affect channel kinetics and cause abnormal trafficking patterns.
Am J Physiol Cell Physiol. 2010 Mar;298(3):C496-509. doi: 10.1152/ajpcell.00464.2009. Epub 2009 Dec 16.
2
Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension.
Am J Physiol Cell Physiol. 2007 May;292(5):C1837-53. doi: 10.1152/ajpcell.00405.2006. Epub 2007 Jan 31.
3
Overexpression of human KCNA5 increases IK V and enhances apoptosis.
Am J Physiol Cell Physiol. 2004 Sep;287(3):C715-22. doi: 10.1152/ajpcell.00050.2004. Epub 2004 May 12.
4
Acute hypoxia selectively inhibits KCNA5 channels in pulmonary artery smooth muscle cells.
Am J Physiol Cell Physiol. 2006 Mar;290(3):C907-16. doi: 10.1152/ajpcell.00028.2005. Epub 2005 Oct 19.
5
Normal targeting of a tagged Kv1.5 channel acutely transfected into fresh adult cardiac myocytes by a biolistic method.
Am J Physiol Cell Physiol. 2010 Jun;298(6):C1343-52. doi: 10.1152/ajpcell.00005.2010. Epub 2010 Mar 24.
6
Four and a half LIM protein 1: a partner for KCNA5 in human atrium.
Cardiovasc Res. 2008 Jun 1;78(3):449-57. doi: 10.1093/cvr/cvn038. Epub 2008 Feb 15.
7
Amino-terminal determinants of U-type inactivation of voltage-gated K+ channels.
J Biol Chem. 2002 Aug 9;277(32):29045-53. doi: 10.1074/jbc.M111470200. Epub 2002 May 20.
8
The anchoring protein SAP97 retains Kv1.5 channels in the plasma membrane of cardiac myocytes.
Am J Physiol Heart Circ Physiol. 2008 Apr;294(4):H1851-61. doi: 10.1152/ajpheart.01045.2007. Epub 2008 Feb 1.
9
miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries.
J Physiol. 2019 Feb;597(4):1185-1197. doi: 10.1113/JP276054. Epub 2018 Jun 21.
10
Hypoxia selectively inhibits KCNA5 channels in pulmonary artery smooth muscle cells.
Ann N Y Acad Sci. 2009 Oct;1177:101-11. doi: 10.1111/j.1749-6632.2009.05040.x.

引用本文的文献

2
Revisiting the Role of KCNA5 in Pulmonary Arterial Hypertension.
Am J Respir Cell Mol Biol. 2023 Aug;69(2):123-125. doi: 10.1165/rcmb.2023-0119ED.
3
Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca signaling.
Physiol Rev. 2023 Jul 1;103(3):1827-1897. doi: 10.1152/physrev.00030.2021. Epub 2022 Nov 24.
4
K1.5-Kβ1.3 Recycling Is PKC-Dependent.
Int J Mol Sci. 2021 Jan 29;22(3):1336. doi: 10.3390/ijms22031336.
5
Exome data clouds the pathogenicity of genetic variants in Pulmonary Arterial Hypertension.
Mol Genet Genomic Med. 2018 Sep;6(5):835-844. doi: 10.1002/mgg3.452. Epub 2018 Aug 6.
6
The emerging role of AMPK in the regulation of breathing and oxygen supply.
Biochem J. 2016 Sep 1;473(17):2561-72. doi: 10.1042/BCJ20160002.
8
Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Genetics of pulmonary hypertension.
Ann Thorac Med. 2014 Jul;9(Suppl 1):S16-20. doi: 10.4103/1817-1737.134009.
9
Novel mutations in BMPR2, ACVRL1 and KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hypertension.
PLoS One. 2014 Jun 17;9(6):e100261. doi: 10.1371/journal.pone.0100261. eCollection 2014.

本文引用的文献

2
Lysosome mediated Kir2.1 breakdown directly influences inward rectifier current density.
Biochem Biophys Res Commun. 2008 Mar 14;367(3):687-92. doi: 10.1016/j.bbrc.2007.12.168. Epub 2008 Jan 7.
3
Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications.
Br J Pharmacol. 2008 Mar;153 Suppl 1(Suppl 1):S99-S111. doi: 10.1038/sj.bjp.0707635. Epub 2007 Dec 17.
4
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment.
Nature. 2007 Nov 15;450(7168):376-82. doi: 10.1038/nature06265.
5
Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension.
Am J Physiol Cell Physiol. 2007 May;292(5):C1837-53. doi: 10.1152/ajpcell.00405.2006. Epub 2007 Jan 31.
6
Regulation of Kv1 channel trafficking by the mamba snake neurotoxin dendrotoxin K.
FASEB J. 2007 Mar;21(3):906-14. doi: 10.1096/fj.06-7229com. Epub 2006 Dec 21.
7
Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation.
Science. 2006 Nov 10;314(5801):1004-7. doi: 10.1126/science.1133415.
8
Pulmonary arterial hypertension.
Circulation. 2006 Sep 26;114(13):1417-31. doi: 10.1161/CIRCULATIONAHA.104.503540.
9
Membrane biology: permutations of permeability.
Nature. 2006 Mar 23;440(7083):427-9. doi: 10.1038/440427a.
10
A specific N-terminal residue in Kv1.5 is required for upregulation of the channel by SAP97.
Biochem Biophys Res Commun. 2006 Mar 31;342(1):1-8. doi: 10.1016/j.bbrc.2006.01.110. Epub 2006 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验