Darra Elena, Ebner Florian Heinrich, Shoji Kazuo, Suzuki Hisanori, Mariotto Sofia
Dipartimento di Scienze Morphologico-Biomediche, Università di Verona, Italy.
Cent Nerv Syst Agents Med Chem. 2009 Dec;9(4):289-94. doi: 10.2174/187152409789630415.
The present review describes the role of the putative cross-talk between two neurotransmitters, nitric oxide (NO) and D-serine, in the brain. Under physiological conditions NO homeostasis guarantees the correct function of NO in a number of events in the brain such as neurotransmission and vascular tone regulation. D-serine, produced in astrocytes, acts synergistically with glutamate at NMDA receptors on postsynaptic neurons. Neuronal and endothelial NO synthase (nNOS and eNOS) in astrocytes cross-talk with serine racemase (SR) and D-amino acid oxydase (DAAO), catalyzing the synthesis and degradation of D-serine, respectively. SR is inhibited by NO which activates DAAO. D-serine inhibits nNOS but not eNOS and activates SR. Astrocytes and neurons also cross-talk through NO/D-serine system. D-serine released from astrocytes induces a rapid increase in NO contents in postsynaptic neurons. Overall, D-serine production in astrocytes is negatively regulated by NO. Under inflammatory conditions, pro-inflammatory cytokines or Abeta induce, first, a drop in NO contents and an increase in the amounts of D-serine in astrocytes. Together with enhanced glutamate release from presynaptic neurons, D-serine induces an increase in Ca(2+) up-take into presynaptic neurons. In astrocytes an initial drop in NO contents triggers NF-kappaB activation followed by inducible NOS (iNOS) expression. iNOS-derived massive amounts of NO may potentially be toxic. Under schizophrenic conditions, D-serine production is down-regulated. Together with reduced glutamate release, this situation leads to the decreased NO production in postsynaptic neurons. In astrocytes induction of iNOS expression becomes predominant. Initial drop in nNOS-derived NO is potentially toxic in this scenario.
本综述描述了两种神经递质一氧化氮(NO)和D-丝氨酸之间假定的相互作用在大脑中的作用。在生理条件下,NO的稳态保证了NO在大脑中的许多事件中发挥正确功能,如神经传递和血管张力调节。在星形胶质细胞中产生的D-丝氨酸,与谷氨酸在突触后神经元的NMDA受体上协同作用。星形胶质细胞中的神经元型和内皮型一氧化氮合酶(nNOS和eNOS)分别与丝氨酸消旋酶(SR)和D-氨基酸氧化酶(DAAO)相互作用,催化D-丝氨酸的合成和降解。SR被激活DAAO的NO抑制。D-丝氨酸抑制nNOS但不抑制eNOS,并激活SR。星形胶质细胞和神经元也通过NO/D-丝氨酸系统相互作用。从星形胶质细胞释放的D-丝氨酸诱导突触后神经元中NO含量迅速增加。总体而言,星形胶质细胞中D-丝氨酸的产生受到NO的负调控。在炎症条件下,促炎细胞因子或β-淀粉样蛋白首先诱导星形胶质细胞中NO含量下降和D-丝氨酸量增加。与突触前神经元谷氨酸释放增强一起,D-丝氨酸诱导突触前神经元中Ca(2+)摄取增加。在星形胶质细胞中,NO含量的最初下降触发核因子κB激活,随后诱导型一氧化氮合酶(iNOS)表达。iNOS产生的大量NO可能具有潜在毒性。在精神分裂症条件下,D-丝氨酸的产生下调。与谷氨酸释放减少一起,这种情况导致突触后神经元中NO产生减少。在星形胶质细胞中,iNOS表达的诱导变得占主导地位。在这种情况下,nNOS衍生的NO的最初下降可能具有毒性。