Suppr超能文献

基于声学辐射力脉冲成像技术体外可视化评估心脏射频消融损伤。

An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

J Cardiovasc Electrophysiol. 2010 May;21(5):557-63. doi: 10.1111/j.1540-8167.2009.01664.x. Epub 2009 Dec 15.

Abstract

INTRODUCTION

Lesion placement and transmurality are critical factors in the success of cardiac transcatheter radiofrequency ablation (RFA) treatments for supraventricular arrhythmias. This study investigated the capabilities of catheter transducer based acoustic radiation force impulse (ARFI) ultrasound imaging for quantifying ablation lesion dimensions.

METHODS AND RESULTS

RFA lesions were created in vitro in porcine ventricular myocardium and imaged with an intracardiac ultrasound catheter transducer capable of acquiring spatially registered B-mode and ARFI images. The myocardium was sliced along the imaging plane and photographed. The maximum ARFI-induced displacement images of the lesion were normalized and spatially registered with the photograph by matching the surfaces of the tissue in the B-mode and photographic images. The lesion dimensions determined by a manual segmentation of the photographed lesion based on the visible discoloration of the tissue were compared to automatic segmentations of the ARFI image using 2 different calculated thresholds. ARFI imaging accurately localized and sized the lesions within the myocardium. Differences in the maximum lateral and axial dimensions were statistically below 2 mm and 1 mm, respectively, for the 2 thresholding methods, with mean percent overlap of 68.7 +/- 5.21% and 66.3 +/- 8.4% for the 2 thresholds used.

CONCLUSION

ARFI imaging is capable of visualizing myocardial RFA lesion dimensions to within 2 mm in vitro. Visualizing lesions during transcatheter cardiac ablation procedures could improve the success of the treatment by imaging lesion line discontinuity and potentially reducing the required number of ablation lesions and procedure time.

摘要

简介

病变位置和透壁性是心脏经导管射频消融(RFA)治疗室上性心律失常成功的关键因素。本研究探讨了基于导管换能器的声辐射力脉冲(ARFI)超声成像定量消融病变尺寸的能力。

方法和结果

在猪心室心肌中进行了体外 RFA 病变,并使用能够获取空间配准 B 模式和 ARFI 图像的心脏内超声导管换能器进行成像。将心肌沿成像平面切开并拍照。病变的最大 ARFI 诱导位移图像通过匹配 B 模式和照片中组织的表面进行归一化和空间配准。基于组织可见变色的手动分割对照片中病变的尺寸进行了确定,并与使用 2 种不同计算阈值的 ARFI 图像的自动分割进行了比较。ARFI 成像准确地定位和测量了心肌内的病变。对于 2 种阈值方法,最大侧向和轴向尺寸的差异分别在 2 毫米和 1 毫米以下,使用的 2 个阈值的平均重叠百分比为 68.7 +/- 5.21%和 66.3 +/- 8.4%。

结论

ARFI 成像能够在体外可视化心肌 RFA 病变的尺寸,精度在 2 毫米以内。在经导管心脏消融手术期间可视化病变可以通过成像病变线不连续性来提高治疗成功率,并可能减少所需的消融病变数量和手术时间。

相似文献

1
An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions.
J Cardiovasc Electrophysiol. 2010 May;21(5):557-63. doi: 10.1111/j.1540-8167.2009.01664.x. Epub 2009 Dec 15.
3
Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions.
Ultrason Imaging. 2014 Apr;36(2):133-48. doi: 10.1177/0161734613519602.
5
Challenges and implementation of radiation-force imaging with an intracardiac ultrasound transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 May;54(5):996-1009. doi: 10.1109/tuffc.2007.345.
6
In vitro photoacoustic visualization of myocardial ablation lesions.
Heart Rhythm. 2014 Jan;11(1):150-7. doi: 10.1016/j.hrthm.2013.09.071. Epub 2013 Sep 27.
7
Scanned 3-D Intracardiac ARFI and SWEI for Imaging Radio-Frequency Ablation Lesions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jul;64(7):1034-1044. doi: 10.1109/TUFFC.2017.2692558. Epub 2017 Apr 7.
8
Contrast-enhanced C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle.
JACC Cardiovasc Imaging. 2011 Mar;4(3):259-68. doi: 10.1016/j.jcmg.2010.11.019.
9
Acoustic radiation force impulse imaging of myocardial radiofrequency ablation: initial in vivo results.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Apr;52(4):631-41. doi: 10.1109/tuffc.2005.1428046.

引用本文的文献

1
Machine learning models based on FEM simulation of hoop mode vibrations to enable ultrasonic cuffless measurement of blood pressure.
Med Biol Eng Comput. 2025 May;63(5):1413-1426. doi: 10.1007/s11517-024-03268-9. Epub 2025 Jan 6.
2
Drug-induced cardiomyopathy: Characterization of a rat model by [F]FDG/PET and [Tc]MIBI/SPECT.
Animal Model Exp Med. 2020 Oct 10;3(4):295-303. doi: 10.1002/ame2.12136. eCollection 2020 Dec.
3
Pulmonary Vein Isolation Lesion Set Assessment During Radiofrequency Catheter Ablation for Atrial Fibrillation.
J Innov Card Rhythm Manag. 2017 Feb 15;8(2):2602-2611. doi: 10.19102/icrm.2017.080204. eCollection 2017 Feb.
5
Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.
PLoS One. 2017 Apr 5;12(4):e0175173. doi: 10.1371/journal.pone.0175173. eCollection 2017.
6
Better Lesion Creation And Assessment During Catheter Ablation.
J Atr Fibrillation. 2015 Oct 31;8(3):1189. doi: 10.4022/jafib.1189. eCollection 2015 Oct-Nov.
7
Recent Advances in Lesion Formation for Catheter Ablation of Atrial Fibrillation.
Circ Arrhythm Electrophysiol. 2016 May;9(5). doi: 10.1161/CIRCEP.115.003299.
8
The Evolution of Tissue Stiffness at Radiofrequency Ablation Sites During Lesion Formation and in the Peri-Ablation Period.
J Cardiovasc Electrophysiol. 2015 Sep;26(9):1009-1018. doi: 10.1111/jce.12709. Epub 2015 Jun 21.
9
Thermal expansion imaging for monitoring lesion depth using M-mode ultrasound during cardiac RF ablation: in vitro study.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):681-93. doi: 10.1007/s11548-015-1203-4. Epub 2015 Apr 23.
10
Intracardiac myocardial elastography in canines and humans in vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):337-49. doi: 10.1109/TUFFC.2014.006784.

本文引用的文献

2
Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):63-76. doi: 10.1109/TUFFC.2009.1006.
3
Complications of catheter ablation for atrial fibrillation: incidence and predictors.
J Cardiovasc Electrophysiol. 2008 Jun;19(6):627-31. doi: 10.1111/j.1540-8167.2008.01181.x. Epub 2008 May 5.
4
Contrasting effects of convective flow on catheter ablation lesion size: cryo versus radiofrequency energy.
Pacing Clin Electrophysiol. 2008 Mar;31(3):300-7. doi: 10.1111/j.1540-8159.2008.00989.x.
5
Safety of single transseptal puncture for ablation of atrial fibrillation: retrospective study from a large cohort of patients.
J Cardiovasc Electrophysiol. 2007 Dec;18(12):1277-81. doi: 10.1111/j.1540-8167.2007.00958.x. Epub 2007 Sep 19.
6
In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging.
Ultrasound Med Biol. 2007 Nov;33(11):1706-19. doi: 10.1016/j.ultrasmedbio.2007.05.009. Epub 2007 Aug 15.
7
Challenges and implementation of radiation-force imaging with an intracardiac ultrasound transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 May;54(5):996-1009. doi: 10.1109/tuffc.2007.345.
8
One-puncture, double-transseptal catheterization manoeuvre in the catheter ablation of atrial fibrillation.
Europace. 2007 Jul;9(7):487-9. doi: 10.1093/europace/eum070. Epub 2007 May 9.
9
Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation.
J Cardiovasc Electrophysiol. 2007 Apr;18(4):387-91. doi: 10.1111/j.1540-8167.2007.00760.x.
10
A parallel tracking method for acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):301-12. doi: 10.1109/tuffc.2007.244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验