Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA.
J Chromatogr A. 2010 Jan 22;1217(4):588-99. doi: 10.1016/j.chroma.2009.11.072. Epub 2009 Dec 1.
In a previous publication we demonstrated a fast simulation tool for solution of electrophoretic focusing and separation. We here describe the novel mathematical model and numerical algorithms used to create this code. These include the representation of advection-diffusion equations on an adaptive grid, high-resolution discretization of the equations (sixth order compact), a new variational-based approach for controlling the motion of grid points, and new boundary conditions which enable solution in a moving frame of reference. We discuss the advantages of combining a high-resolution discretization with an adaptive grid in accurately resolving sharp interfaces in isotachophoresis, and provide verification against known analytical solutions and comparison with prevailing exiting numerical algorithms.
在之前的出版物中,我们展示了一种用于电泳聚焦和分离的快速模拟工具。在这里,我们将描述用于创建此代码的新数学模型和数值算法。这些包括在自适应网格上表示对流扩散方程、对方程进行高分辨率离散化(六阶紧致)、用于控制网格点运动的新变分方法以及允许在运动参考系中求解的新边界条件。我们讨论了在准确解析等速电泳中的尖锐界面时,将高分辨率离散化与自适应网格相结合的优势,并提供了与已知解析解的验证和与现有数值算法的比较。