Suppr超能文献

AAA+ 伴侣蛋白 ClpX 调节原核细胞骨架蛋白 FtsZ 的动态变化。

AAA+ chaperone ClpX regulates dynamics of prokaryotic cytoskeletal protein FtsZ.

机构信息

Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.

出版信息

J Biol Chem. 2010 Feb 26;285(9):6648-57. doi: 10.1074/jbc.M109.080739. Epub 2009 Dec 17.

Abstract

AAA(+) chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is inhibited by ClpX in an ATP-independent manner and that the N-terminal domain of ClpX plays a crucial role for the inhibition of FtsZ polymerization. Single molecule analysis with high speed atomic force microscopy directly revealed that FtsZ polymer is in a dynamic equilibrium between polymerization and depolymerization on a time scale of several seconds. ClpX disassembles FtsZ polymers presumably by blocking reassembly of FtsZ. Furthermore, Escherichia coli cells overproducing ClpX and N-terminal domain of ClpX show filamentous morphology with abnormal localization of FtsZ. These data together suggest that ClpX modulates FtsZ polymer dynamics in an ATP-independent fashion, which is achieved by interaction between the N-terminal domain of ClpX and FtsZ monomers or oligomers.

摘要

AAA(+)伴侣蛋白 ClpX 被认为是原核细胞骨架蛋白 FtsZ 的调节剂,但 ClpX 识别和重塑 FtsZ 的细节在很大程度上尚不清楚。在这项研究中,我们广泛研究了 FtsZ 聚合物的性质和 ClpX 调节的 FtsZ 聚合物动力学的机制。我们发现 ClpX 以非 ATP 依赖的方式抑制 FtsZ 聚合,并且 ClpX 的 N 端结构域对于抑制 FtsZ 聚合起着至关重要的作用。利用高速原子力显微镜的单分子分析直接揭示了 FtsZ 聚合物在聚合和解聚之间处于动态平衡,时间尺度为几秒钟。ClpX 可能通过阻止 FtsZ 的重新组装来解聚 FtsZ 聚合物。此外,过度表达 ClpX 和 ClpX N 端结构域的大肠杆菌细胞表现出线状形态,FtsZ 定位异常。这些数据共同表明,ClpX 以非 ATP 依赖的方式调节 FtsZ 聚合物动力学,这是通过 ClpX 的 N 端结构域与 FtsZ 单体或低聚物之间的相互作用实现的。

相似文献

1
AAA+ chaperone ClpX regulates dynamics of prokaryotic cytoskeletal protein FtsZ.
J Biol Chem. 2010 Feb 26;285(9):6648-57. doi: 10.1074/jbc.M109.080739. Epub 2009 Dec 17.
2
The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ.
Mol Microbiol. 2005 Jul;57(1):238-49. doi: 10.1111/j.1365-2958.2005.04673.x.
3
The interplay of ClpXP with the cell division machinery in Escherichia coli.
J Bacteriol. 2011 Apr;193(8):1911-8. doi: 10.1128/JB.01317-10. Epub 2011 Feb 11.
4
ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10614-9. doi: 10.1073/pnas.0904886106. Epub 2009 Jun 17.
5
Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
EMBO J. 2006 Jul 26;25(14):3367-76. doi: 10.1038/sj.emboj.7601223. Epub 2006 Jun 29.
6
The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function.
J Biol Chem. 2003 Dec 5;278(49):48981-90. doi: 10.1074/jbc.M307825200. Epub 2003 Aug 23.
7
Progress and prospect of single-molecular ClpX ATPase researching system-a mini-review.
Gene. 2021 Mar 30;774:145420. doi: 10.1016/j.gene.2021.145420. Epub 2021 Jan 9.
8
ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity.
J Bacteriol. 2009 Mar;191(6):1986-91. doi: 10.1128/JB.01606-07. Epub 2009 Jan 9.
9
Polypeptide translocation by the AAA+ ClpXP protease machine.
Chem Biol. 2009 Jun 26;16(6):605-12. doi: 10.1016/j.chembiol.2009.05.007.
10
Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
J Biol Chem. 2001 Aug 3;276(31):29420-9. doi: 10.1074/jbc.M103489200. Epub 2001 May 9.

引用本文的文献

1
Loss of the ClpXP Protease Leads to Decreased Resistance to Cell-Envelope Targeting Antimicrobials in Sterne.
Front Microbiol. 2021 Aug 23;12:719548. doi: 10.3389/fmicb.2021.719548. eCollection 2021.
2
Dynamic Assembly/Disassembly of FtsZ Visualized by High-Speed Atomic Force Microscopy.
Int J Mol Sci. 2021 Feb 8;22(4):1697. doi: 10.3390/ijms22041697.
3
β-Lactams against the Fortress of the Gram-Positive Bacterium.
Chem Rev. 2021 Mar 24;121(6):3412-3463. doi: 10.1021/acs.chemrev.0c01010. Epub 2020 Dec 29.
4
ClpX Is Essential and Activated by Single-Strand DNA Binding Protein in Mycobacteria.
J Bacteriol. 2021 Jan 25;203(4). doi: 10.1128/JB.00608-20.
7
Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division.
J Bacteriol. 2019 Mar 13;201(7). doi: 10.1128/JB.00697-18. Print 2019 Apr 1.
8
Selectivity among Anti-σ Factors by ClpX Influences Intracellular Levels of Extracytoplasmic Function σ Factors.
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00748-18. Print 2019 Mar 15.
9
Protease-deficient SOS constitutive cells have RecN-dependent cell division phenotypes.
Mol Microbiol. 2019 Feb;111(2):405-422. doi: 10.1111/mmi.14162. Epub 2018 Dec 5.
10

本文引用的文献

1
Structural plasticity in actin and tubulin polymer dynamics.
Science. 2009 Aug 21;325(5943):960-3. doi: 10.1126/science.1168823.
2
Bacterial cell division: assembly, maintenance and disassembly of the Z ring.
Nat Rev Microbiol. 2009 Sep;7(9):642-53. doi: 10.1038/nrmicro2198.
4
ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10614-9. doi: 10.1073/pnas.0904886106. Epub 2009 Jun 17.
6
ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity.
J Bacteriol. 2009 Mar;191(6):1986-91. doi: 10.1128/JB.01606-07. Epub 2009 Jan 9.
8
Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
Nat Struct Mol Biol. 2008 Nov;15(11):1147-51. doi: 10.1038/nsmb.1503. Epub 2008 Oct 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验