Suppr超能文献

大肠杆菌中阿拉伯糖和木糖代谢的调控。

Regulation of arabinose and xylose metabolism in Escherichia coli.

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61810, USA.

出版信息

Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18.

Abstract

Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.

摘要

当同时提供多种糖时,细菌(如大肠杆菌)通常会一次消耗一种糖,这个过程被称为碳分解代谢物阻遏。经典的例子涉及葡萄糖和乳糖,大肠杆菌首先会消耗葡萄糖,只有当它消耗完所有的葡萄糖后,才会开始消耗乳糖。除了乳糖之外,葡萄糖还会抑制其他许多糖的消耗,包括阿拉伯糖和木糖。在这项工作中,我们描述了大肠杆菌中的第二个层次,即阿拉伯糖和木糖之间的层次。我们表明,当在两种戊糖的混合物中生长时,大肠杆菌会先消耗阿拉伯糖,然后再消耗木糖。与涉及分解代谢物阻遏的机制一致,在阿拉伯糖存在的情况下,木糖代谢基因的表达受到抑制。我们发现这种抑制是依赖于 AraC 的,并且涉及一种机制,其中阿拉伯糖结合的 AraC 结合到木糖启动子上并抑制基因表达。总的来说,这些结果表明,大肠杆菌中的糖利用涉及多个层次的调节,细胞首先消耗葡萄糖,然后是阿拉伯糖,最后是木糖。这些结果在代谢工程中可能是相关的,代谢工程旨在利用源自植物生物质的己糖和戊糖混合物来生产化学品和生物燃料。

相似文献

1
Regulation of arabinose and xylose metabolism in Escherichia coli.
Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18.
3
Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
J Bacteriol. 2015 Nov 2;198(3):386-93. doi: 10.1128/JB.00709-15. Print 2016 Feb 1.
4
Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
Biotechnol Bioeng. 2014 Jun;111(6):1108-15. doi: 10.1002/bit.25182. Epub 2014 Jan 23.
5
Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
Lett Appl Microbiol. 2018 Feb;66(2):132-137. doi: 10.1111/lam.12827. Epub 2018 Jan 11.
7
Simultaneous glucose and xylose utilization by an catabolite repression mutant.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0216923. doi: 10.1128/aem.02169-23. Epub 2024 Jan 30.

引用本文的文献

1
L-Arabinose Alters the Transcriptome to Favor Biofilm Growth and Enhances Survival During Fluoroquinolone Stress.
Microorganisms. 2025 Jul 15;13(7):1665. doi: 10.3390/microorganisms13071665.
2
Convergent evolution of distinct D-ribulose utilisation pathways in attaching and effacing pathogens.
Nat Commun. 2025 Jul 29;16(1):6976. doi: 10.1038/s41467-025-62476-5.
3
An intracellular release peptide display technology unveils an antimicrobial peptide with low probability for resistance development.
iScience. 2025 May 9;28(6):112619. doi: 10.1016/j.isci.2025.112619. eCollection 2025 Jun 20.
4
An evolved, orthogonal ssDNA generator for targeted hypermutation of multiple genomic loci.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkaf051.
5
XylR regulates genes at xyl cluster, involved in D-xylose catabolism in Herbaspirillum seropedicae Z69.
Arch Microbiol. 2024 Oct 1;206(10):422. doi: 10.1007/s00203-024-04143-9.
6
Untargeted metabolomics coupled with genomics in the study of sucrose and xylose metabolism in .
Front Microbiol. 2024 May 15;15:1323765. doi: 10.3389/fmicb.2024.1323765. eCollection 2024.
8
XylR Overexpression in Escherichia coli Alleviated Transcriptional Repression by Arabinose and Enhanced Xylitol Bioproduction from Xylose Mother Liquor.
Appl Biochem Biotechnol. 2024 Oct;196(10):6624-6637. doi: 10.1007/s12010-024-04890-x. Epub 2024 Feb 23.
9
Simultaneous glucose and xylose utilization by an catabolite repression mutant.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0216923. doi: 10.1128/aem.02169-23. Epub 2024 Jan 30.
10
High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates.
Commun Biol. 2023 Nov 24;6(1):1192. doi: 10.1038/s42003-023-05532-4.

本文引用的文献

1
MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8. doi: 10.1093/nar/gkp335. Epub 2009 May 20.
2
Constitutive mutations in the Escherichia coli AraC protein.
J Bacteriol. 2009 Apr;191(8):2668-74. doi: 10.1128/JB.01529-08. Epub 2009 Feb 13.
3
Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
Nat Rev Microbiol. 2008 Aug;6(8):613-24. doi: 10.1038/nrmicro1932.
4
Role of xylose transporters in xylitol production from engineered Escherichia coli.
J Biotechnol. 2008 Apr 30;134(3-4):246-52. doi: 10.1016/j.jbiotec.2008.02.003. Epub 2008 Feb 15.
5
The mechanisms of carbon catabolite repression in bacteria.
Curr Opin Microbiol. 2008 Apr;11(2):87-93. doi: 10.1016/j.mib.2008.02.007. Epub 2008 Mar 21.
7
Quantifying similarity between motifs.
Genome Biol. 2007;8(2):R24. doi: 10.1186/gb-2007-8-2-r24.
8
RegTransBase--a database of regulatory sequences and interactions in a wide range of prokaryotic genomes.
Nucleic Acids Res. 2007 Jan;35(Database issue):D407-12. doi: 10.1093/nar/gkl865. Epub 2006 Nov 16.
9
Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
Biotechnol Bioeng. 2006 Dec 20;95(6):1167-76. doi: 10.1002/bit.21082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验